Lithium Distribution in Monocrystalline Silicon-Based Lithium-Ion Batteries

被引:10
|
作者
Janski, R. [1 ,2 ]
Fugger, M. [3 ]
Sternad, M. [1 ]
Wilkening, M. [1 ]
机构
[1] Graz Univ Technol, Inst Chem & Technol Mat, Christian Doppler Lab Lithium Batteries, A-8010 Graz, Austria
[2] Infineon Technol Austria AG, A-9500 Villach, Austria
[3] Vienna Univ Technol, Inst Chem Technol & Analyt, A-1040 Vienna, Austria
关键词
DIFFUSION; ANODE; SI;
D O I
10.1149/06201.0247ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The ability of nitrides and alloys of refractory metals to act as solid-state diffusion barrier for Li migration in Si was evaluated by mass spectrometry techniques. Magnetron sputtered barrier films on silicon, assembled in a Swagelok (R) half-cell, were used as working electrodes to determine whether several barrier layers are able to prevent the formation of Li-Si alloys. In addition, lithium ion diffusion was studied in monocrystalline silicon. To determine the depth profiles in the silicon substrate and in the barrier layer, respectively, two complementary techniques, being based on mass spectrometry, were applied: (i) ToF-SIMS was used as imaging technique for depth profiling the first microns and (ii) laser ablation ICP-MS was carried out to study depth profiles of up to hundreds of microns. Titanium nitride as well as tantalum nitride barriers turned out to prevent or inhibit the reaction between lithium and silicon. Regarding Li diffusion in silicon preliminary tests were performed to investigate both diffusion coefficients and the activation energies in (100) monocrystalline silicon.
引用
收藏
页码:247 / 253
页数:7
相关论文
共 50 条
  • [21] Recent progress of analysis techniques for silicon-based anode of lithium-ion batteries
    Son, Yeonguk
    Sung, Jaekyung
    Son, Yoonkook
    Cho, Jaephil
    CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 6 (01) : 77 - 83
  • [22] Research progress of functional binders for silicon-based anodes in lithium-ion batteries
    Zhou, Jianhua
    Chen, Xiaoyu
    Luo, Zongwu
    Jingxi Huagong/Fine Chemicals, 2022, 39 (07): : 1330 - 1338
  • [23] A Novel Biogenic Silicon-Based Anode Material for Lithium-Ion Batteries: A Review
    Seroka, Ntalane Sello
    Luo, Hongze
    Khotseng, Lindiwe
    ENERGIES, 2024, 17 (14)
  • [24] Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries
    Wei Tao
    Ping Wang
    Ya You
    Kyusung Park
    Cao-Yu Wang
    Yong-Ke Li
    Fei-Fei Cao
    Sen Xin
    Nano Research, 2019, 12 : 1739 - 1749
  • [25] Recent advances of silicon-based solid-state lithium-ion batteries
    Chen, Xin
    Fu, Chuankai
    Wang, Yuanheng
    Yan, Jiaxin
    Ma, Yulin
    Huo, Hua
    Zuo, Pengjian
    Yin, Geping
    Gao, Yunzhi
    ETRANSPORTATION, 2024, 19
  • [26] Exploration of Humic Acids as the Binder of Silicon-Based Anode for Lithium-Ion Batteries
    Yang, Shuzhen
    Han, Guihong
    Huang, Yanfang
    Liu, Jiongtian
    CHARACTERIZATION OF MINERALS, METALS, AND MATERIALS 2019, 2019, : 657 - 663
  • [27] Recent Progress in Advanced Characterization Methods for Silicon-Based Lithium-Ion Batteries
    Wu, Jingkun
    Ma, Fei
    Liu, Xiaorui
    Fan, Xiayue
    Shen, Long
    Wu, Zhihong
    Ding, Xiaoyang
    Han, Xiaopeng
    Deng, Yida
    Hu, Wenbin
    Zhong, Cheng
    SMALL METHODS, 2019, 3 (10)
  • [28] Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries
    Zhang, Jingshuo
    Zhai, Yue
    Zhao, Ziyun
    He, Jiaxing
    Wei, Wei
    Xiao, Jing
    Wu, Shichao
    Yang, Quan-Hong
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (06)
  • [29] Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries
    Munao, David
    Valvo, Mario
    van Erven, Jan
    Kelder, Erik M.
    Hassoun, Jusef
    Panero, Stefania
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (04) : 1556 - 1561
  • [30] Training-improved electrochemical performances of silicon-based lithium-ion batteries
    Zhang, Kai
    Zhou, Junwu
    Zheng, Bailin
    Li, Yong
    Yang, Fuqian
    JOURNAL OF POWER SOURCES, 2025, 629