Lithium Distribution in Monocrystalline Silicon-Based Lithium-Ion Batteries

被引:10
|
作者
Janski, R. [1 ,2 ]
Fugger, M. [3 ]
Sternad, M. [1 ]
Wilkening, M. [1 ]
机构
[1] Graz Univ Technol, Inst Chem & Technol Mat, Christian Doppler Lab Lithium Batteries, A-8010 Graz, Austria
[2] Infineon Technol Austria AG, A-9500 Villach, Austria
[3] Vienna Univ Technol, Inst Chem Technol & Analyt, A-1040 Vienna, Austria
关键词
DIFFUSION; ANODE; SI;
D O I
10.1149/06201.0247ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The ability of nitrides and alloys of refractory metals to act as solid-state diffusion barrier for Li migration in Si was evaluated by mass spectrometry techniques. Magnetron sputtered barrier films on silicon, assembled in a Swagelok (R) half-cell, were used as working electrodes to determine whether several barrier layers are able to prevent the formation of Li-Si alloys. In addition, lithium ion diffusion was studied in monocrystalline silicon. To determine the depth profiles in the silicon substrate and in the barrier layer, respectively, two complementary techniques, being based on mass spectrometry, were applied: (i) ToF-SIMS was used as imaging technique for depth profiling the first microns and (ii) laser ablation ICP-MS was carried out to study depth profiles of up to hundreds of microns. Titanium nitride as well as tantalum nitride barriers turned out to prevent or inhibit the reaction between lithium and silicon. Regarding Li diffusion in silicon preliminary tests were performed to investigate both diffusion coefficients and the activation energies in (100) monocrystalline silicon.
引用
收藏
页码:247 / 253
页数:7
相关论文
共 50 条
  • [1] Silicon-based nanomaterials for lithium-ion batteries
    YIN YaXia
    Science Bulletin, 2012, (32) : 4104 - 4110
  • [2] Silicon-based nanomaterials for lithium-ion batteries
    Yin YaXia
    Wan LiJun
    Guo YuGuo
    CHINESE SCIENCE BULLETIN, 2012, 57 (32): : 4104 - 4110
  • [3] Silicon-Based Anode Materials for Lithium-Ion Batteries
    Jin, Niu
    Su, Zhang
    Yue, Niu
    Song Huaihe
    Chen Xiaohong
    Zhou Jisheng
    PROGRESS IN CHEMISTRY, 2015, 27 (09) : 1275 - 1290
  • [4] Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
    Su, Xin
    Wu, Qingliu
    Li, Juchuan
    Xiao, Xingcheng
    Lott, Amber
    Lu, Wenquan
    Sheldon, Brian W.
    Wu, Ji
    ADVANCED ENERGY MATERIALS, 2014, 4 (01)
  • [5] Silicon-Based and -Related Materials for Lithium-Ion Batteries
    Zhao, Yun
    Kang, Yuqiong
    Jin, Yuhong
    Wang, Li
    Tian, Guangyu
    He, Xiangming
    PROGRESS IN CHEMISTRY, 2019, 31 (04) : 613 - 630
  • [6] Progress in Binders for Silicon-Based Lithium-Ion Batteries Anodes
    Xu Z.
    Zhang Z.
    Sun J.
    Zhao W.
    Wang Q.
    Cao L.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (05): : 161 - 170
  • [7] A Review of Silicon-Based Anode Applied in Lithium-Ion Batteries
    Bai Y.
    Wang M.
    Zhang J.
    Wang Z.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2023, 43 (12): : 1213 - 1223
  • [8] Silicon-based anodes for the next generation of lithium-ion batteries
    Smirnova, Alevtina
    Kolla, Praveen
    Schrandt, Matthew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [9] Effect of temperature on silicon-based anodes for lithium-ion batteries
    Piernas-Munoz, M. J.
    Trask, S. E.
    Dunlop, A. R.
    Lee, E.
    Bloom, I
    JOURNAL OF POWER SOURCES, 2019, 441
  • [10] Recent advances in modification strategies of silicon-based lithium-ion batteries
    Wang, Wenlei
    Wang, Yu
    Yuan, Lixuan
    You, Chaolin
    Wu, Junwei
    Liu, Lili
    Ye, Jilei
    Wu, Yunling
    Fu, Lijun
    NANO RESEARCH, 2023, 16 (03) : 3781 - 3803