Thermal boundary resistance of nanocomposites

被引:25
|
作者
Prasher, R [1 ]
机构
[1] Intel Corp, Chandler, AZ 85226 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.ijheatmasstransfer.2005.04.034
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper develops the general framework for the calculation of thermal boundary resistance between a substrate and a composite. All the previous works on the modeling of thermal boundary resistance have only dealt with pure materials. Thermal boundary resistance is dependent on the phonon equilibrium intensity and the transmissivity of phonons across the interface. These quantities depend on the group velocity, phase velocity and density of states of phonons. Due to multiple and dependent scattering of phonons the group velocity, phase velocity and the density of states are modified in a composite. Modification of these quantities is more dominant for nanocomposites at low temperatures. Results for silicon/germanium nanocomposite show that thermal boundary resistance can be severely modified depending on the temperature and size of the particulates. Results also show that when the particle size becomes large, the thermal boundary resistance between the substrate and the composite is same as that between the substrate and the host matrix of the composite. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4942 / 4952
页数:11
相关论文
共 50 条
  • [31] Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance
    Shin, Hyunseong
    Yang, Seunghwa
    Chang, Seongmin
    Yu, Suyoung
    Cho, Maenghyo
    POLYMER, 2013, 54 (05) : 1543 - 1554
  • [32] Thermal boundary resistance at the graphene-oil interface
    Konatham, Deepthi
    Striolo, Alberto
    APPLIED PHYSICS LETTERS, 2009, 95 (16)
  • [33] A Modified Thermal `Boundary Resistance Model for FCC Structures
    Zhao, Ruijie
    Chen, Yunfei
    Bi, Kedong
    Lin, Meihui
    Wang, Zan
    MNHMT2009, VOL 2, 2010, : 659 - 665
  • [34] THERMAL BOUNDARY RESISTANCE AT INTERFACES BETWEEN 2 DIELECTRICS
    SCHMIDT, G
    PHYSICS LETTERS A, 1974, A 50 (04) : 241 - 242
  • [35] The Role of Interface Vibrational Modes in Thermal Boundary Resistance
    Stanley, Christopher M.
    Rader, Benjamin K.
    Laster, Braxton H. D.
    Servati, Mahsa
    Estreicher, Stefan K.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (23):
  • [36] Optimized thermoelectric refrigeration in the presence of thermal boundary resistance
    Pettes, Anthony M.
    Hodes, Marc S.
    Goodson, Kenneth E.
    IPACK 2007: PROCEEDINGS OF THE ASME INTERPACK CONFERENCE 2007, VOL 2, 2007, : 221 - 228
  • [37] TRANSPORT-THEORY APPROACH TO THERMAL BOUNDARY RESISTANCE
    SASLOW, WM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (03): : 380 - 380
  • [38] Optimized Thermoelectric Refrigeration in the Presence of Thermal Boundary Resistance
    Pettes, Anthony M.
    Hodes, Marc S.
    Goodson, Kenneth E.
    IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2009, 32 (02): : 423 - 430
  • [39] Prediction of thermal boundary resistance by the machine learning method
    Zhan, Tianzhuo
    Fang, Lei
    Xu, Yibin
    SCIENTIFIC REPORTS, 2017, 7
  • [40] THERMAL BOUNDARY RESISTANCE AT METAL-EPOXY INTERFACES
    MATSUMOTO, DS
    REYNOLDS, CL
    ANDERSON, AC
    PHYSICAL REVIEW B, 1977, 16 (08): : 3303 - 3307