Parallel finite element methods with weighted linear B-splines

被引:4
|
作者
Hoellig, Klaus [1 ]
Hoerner, Jorg [1 ]
Pfeil, Martina [1 ]
机构
[1] Univ Stuttgart, IMNG, D-70569 Stuttgart, Germany
关键词
D O I
10.1007/978-3-540-74739-0_43
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Weighted extended B-splines (web-splines) combine the computational efficiency of B-splines and the geometric flexibility of standard finite elements on unstructured meshes. These new finite elements on uniform grids (cf. [5] and www.webspline.de) are ideally suited for vectorization, parallelization and multilevel techniques. In this project we explore the potential of the web-method for large scale applications with performance tests on the NEC SX-8 cluster of the HLRS. We implement a new minimal degree variant which uses predefined instruction sequences for matrix assembly and is almost as efficient as a difference scheme on rectangular domains.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 50 条
  • [41] Linear Control Toolbox - supporting B-splines in LPV control
    Verbandt, Maarten
    Jacobs, Laurens
    Turk, Dora
    Singh, Taranjitsingh
    Swevers, Jan
    Pipeleers, Goele
    MECHATRONICS, 2018, 52 : 78 - 89
  • [42] Classical testing based on B-splines in functional linear models
    Sohn, Jihoon
    Lee, Eun Ryung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2019, 32 (04) : 607 - 618
  • [43] DLOFTBs - Fast Tracking of Deformable Linear Objects with B-splines
    Kicki, Piotr
    Szymko, Amadeusz
    Walas, Krzysztof
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 7104 - 7110
  • [44] Expandable Parallel Finite Element Methods for Linear Elliptic Problems
    Du, Guangzhi
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (02) : 572 - 588
  • [45] Expandable Parallel Finite Element Methods for Linear Elliptic Problems
    Guangzhi Du
    Acta Mathematica Scientia, 2020, 40 : 572 - 588
  • [47] Linear combinations of B-splines as generating functions for signal approximation
    Reis, MJCS
    Ferreira, PJSG
    Soares, SFSP
    DIGITAL SIGNAL PROCESSING, 2005, 15 (03) : 226 - 236
  • [48] TWO-STAGE APPROXIMATION METHODS WITH EXTENDED B-SPLINES
    Davydov, O.
    Prasiswa, J.
    Reif, U.
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 809 - 833
  • [49] Dirichlet splines as fractional integrals of B-splines
    Castell, WZ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (02) : 545 - 559
  • [50] B-splines contra Béziersplines
    Herrmann, N.
    Hungarian Journal of Industrial Chemistry, 2001, 29 (02): : 105 - 111