Man Overboard: Fall detection using spatiotemporal convolutional autoencoders in maritime environments

被引:6
|
作者
Nikolaos, N. B. [1 ]
Iason, I. K. [1 ]
Athanasios, A., V [2 ]
机构
[1] Natl Tech Univ Athens, Athens, Greece
[2] Univ West Attica, Athens, Greece
关键词
Man overboard; Human detection; Deep learning Computer; RECOGNITION; SYSTEM;
D O I
10.1145/3453892.3461326
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Man overboard incidents in a maritime vessel are serious accidents where, the efficient and rapid detection is crucial in the recovery of the victim. The severity of such accidents, urge the use of intelligent systems that are able to automatically detect a fall and provide relevant alerts. To this end the use of novel deep learning and computer vision algorithms have been tested and proved efficient in problems with similar structure. This paper presents the use of a deep learning framework for automatic detection of man overboard incidents. We investigate the use of simple RGB video streams for extracting specific properties of the scene, such as movement and saliency, and use convolutional spatiotemporal autoencoders to model the normal conditions and identify anomalies. Moreover, in this work we present a dataset that was created to train and test the efficacy of our approach.
引用
收藏
页码:420 / 425
页数:6
相关论文
共 50 条
  • [1] Fall Detection Using Multi-Property Spatiotemporal Autoencoders in Maritime Environments
    Katsamenis, Iason
    Bakalos, Nikolaos
    Karolou, Eleni Eirini
    Doulamis, Anastasios
    Doulamis, Nikolaos
    TECHNOLOGIES, 2022, 10 (02)
  • [2] A Lightweight Man-Overboard Detection and Tracking Model Using Aerial Images for Maritime Search and Rescue
    Zhang, Yijian
    Tao, Qianyi
    Yin, Yong
    REMOTE SENSING, 2024, 16 (01)
  • [3] Object Detection and Tracking in Maritime Environments in Case of Person-Overboard Scenarios: An Overview
    Hoehner, Florian
    Langenohl, Vincent
    Akyol, Suat
    el Moctar, Ould
    Schellin, Thomas E.
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (11)
  • [4] Anomaly Detection for HTTP Using Convolutional Autoencoders
    Park, Seungyoung
    Kim, Myungjin
    Lee, Seokwoo
    IEEE ACCESS, 2018, 6 : 70884 - 70901
  • [5] Man Overboard Detection System Using IoT for Navigation Model
    Guruler, Huseyin
    Altun, Murat
    Khan, Faheem
    Whangbo, Taegkeun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 4955 - 4969
  • [6] Man Overboard Detection System Using IoT for Navigation Model
    Gürüler, Hüseyin
    Altun, Murat
    Khan, Faheem
    Whangbo, Taegkeun
    Computers, Materials and Continua, 2022, 71 (02): : 4955 - 4969
  • [7] Using convolutional autoencoders to extract visual features of leisure and retail environments
    Comber, Sam
    Arribas-Bel, Daniel
    Singleton, Alex
    Dolega, Les
    LANDSCAPE AND URBAN PLANNING, 2020, 202
  • [8] Machine Learning-Assisted Man Overboard Detection Using Radars
    Tsekenis, Vasileios
    Armeniakos, Charalampos K.
    Nikolaidis, Viktor
    Bithas, Petros S.
    Kanatas, Athanasios G.
    ELECTRONICS, 2021, 10 (11)
  • [9] Anomaly detection in gravitational waves data using convolutional autoencoders
    Morawski F.
    Bejger M.
    Cuoco E.
    Petre L.
    Machine Learning: Science and Technology, 2021, 2 (04):
  • [10] Delamination detection in aerospace composite panels using convolutional autoencoders
    Rautela, Mahindra
    Monaco, Ernesto
    Gopalakrishnan, Srinivasan
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XV, 2021, 11593