Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy

被引:8
|
作者
Zhang, Mingqian [1 ]
Wang, Jia [2 ]
机构
[1] China Acad Space Technol, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[2] Tsinghua Univ, Dept Precis Instruments, State Key Lab Precis Measurement Technol & Instru, Beijing 100084, Peoples R China
来源
关键词
Tip-enhancement; Plasmonic lens; Longitudinal electric field; Surface plasmon polaritons; Tip-enhanced Raman spectroscopy; NEAR-FIELD;
D O I
10.1186/s11671-015-0897-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel tip-enhanced Raman spectroscopy setup with longitudinal field excitation generated by a plasmonic lens is investigated. A symmetry-breaking structure plasmonic lens that is expected to realize a strong longitudinal electric field focus has been designed to generate suitable excitation for enhancement in a tip antenna. The focusing performance of the plasmonic lens is theoretically simulated by the finite-difference time-domain method and experimentally verified by the detection of optical near-field distribution. A plasmonic lens assisted tip-enhanced Raman spectroscopy setup has been constructed and used to investigate specimens of carbon nanotubes. Tip-enhanced Raman spectra with distinct excitation wavelengths show similar Raman shifts but different intensities. Experimental results presented in this paper demonstrate that the Raman signal is considerably enhanced. It indicates that the novel tip-enhanced Raman spectroscopy configuration is feasible and is a promising technique for tip-enhanced Raman spectroscopy measurements and characterizations.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [41] Depolarization effects in tip-enhanced Raman spectroscopy
    Merlen, A.
    Valmalette, J. C.
    Gucciardi, P. G.
    de la Chapelle, M. Lamy
    Frigoute, A.
    Ossikovskie, R.
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (10) : 1361 - 1370
  • [42] Multifunctional microscope for far-field and tip-enhanced Raman spectroscopy
    Vannier, C
    Yeo, BS
    Melanson, J
    Zenobi, R
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (02):
  • [43] The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy
    Schultz, Jeremy F.
    Mahapatra, Sayantan
    Li, Linfei
    Jiang, Nan
    APPLIED SPECTROSCOPY, 2020, 74 (11) : 1313 - 1340
  • [44] Digital operating tip-enhanced Raman spectroscopy
    Kim, Hwanhee
    Moon, Taeyoung
    Lee, Hyeongwoo
    Koo, Yeonjeong
    Kang, Mingu
    Park, Kyoung-Duck
    An, Sangmin
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 81 (06) : 510 - 515
  • [45] Digital operating tip-enhanced Raman spectroscopy
    Hwanhee Kim
    Taeyoung Moon
    Hyeongwoo Lee
    Yeonjeong Koo
    Mingu Kang
    Kyoung-Duck Park
    Sangmin An
    Journal of the Korean Physical Society, 2022, 81 : 510 - 515
  • [46] Tip-enhanced Raman spectroscopy of carbon nanotubes
    Cancado, Luiz Gustavo
    Hartschuh, Achim
    Novotny, Lukas
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (10) : 1420 - 1426
  • [47] Tip-enhanced Raman spectroscopy: principles and applications
    Naresh Kumar
    Sandro Mignuzzi
    Weitao Su
    Debdulal Roy
    EPJ Techniques and Instrumentation, 2 (1)
  • [48] Tip-enhanced Raman spectroscopy: principles and applications
    Kumar, Naresh
    Mignuzzi, Sandro
    Su, Weitao
    Roy, Debdulal
    EPJ TECHNIQUES AND INSTRUMENTATION, 2015, 2
  • [49] Tip-enhanced Raman spectroscopy with Angstrom resolution
    Van Duyne, Richard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [50] Performing tip-enhanced Raman spectroscopy in liquids
    Schmid, Thomas
    Yeo, Boon-Siang
    Leong, Grace
    Stadler, Johannes
    Zenobi, Renato
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (10) : 1392 - 1399