Tri-layered alginate/poly(ε-caprolactone) electrospun scaffold for cardiac tissue engineering

被引:16
|
作者
Karimi, Seyed Nasir Hosseini [1 ]
Aghdam, Rouhollah Mehdinavaz [1 ]
Ebrahimi, S. A. Seyyed [1 ,2 ]
Chehrehsaz, Yalda [3 ]
机构
[1] Univ Tehran, Sch Met & Mat Engn, Coll Engn, POB 11155-4563, Tehran, Iran
[2] Univ Tehran, Adv Magnet Mat Res Ctr, Coll Engn, Tehran, Iran
[3] Amirkabir Univ Technol, Dept Biomed Engn, Tehran Polytech, Tehran, Iran
基金
美国国家科学基金会;
关键词
nanofibrous scaffolds; electrospinning; cardiac tissue engineering; PCL; alginate; graphene oxide; CONDUCTIVE NANOFIBROUS SCAFFOLDS; GRAPHENE OXIDE; CARDIOGENIC DIFFERENTIATION; COMPOSITE SCAFFOLDS; MECHANICAL STRENGTH; STEM-CELLS; POLYMER; POLYCAPROLACTONE; MEMBRANES; BEHAVIOR;
D O I
10.1002/pi.6371
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Novel tri-layered electrospun alginate-graphene oxide (GO)/poly(epsilon-caprolactone) (PCL) conductive scaffolds were fabricated with a sequential electrospinning method for the first time, in which the middle PCL layer acts as a mechanical support of the scaffold. The top and bottom alginate-GO nanofibrous layers provide cell viability and attachment, and also electroconductivity for the scaffold. The fabrication of this nanofibrous scaffold aims to simulate cardiac extracellular matrix. Scanning electron microscopy and infrared spectroscopy were used to characterize the nanofibrous scaffolds, confirming the presence of GO in nanofibers and also crosslinking reaction of the alginate nanofibrous layer. The electroconductivity of the tri-layered electrospun scaffolds reached 7.29 +/- 0.91 mu S with the incorporation of 1 wt% GO into the top and bottom alginate nanofibrous layers. The ultimate tensile strength and Young's modulus of the alginate-0.5 wt% GO/PCL scaffold reached 22.46 +/- 0.07 and 4.35 +/- 0.56 MPa, respectively. The biocompatibility of the nanofibrous scaffolds was evaluated using cardiac progenitor cells. The results showed that the presence of GO accelerated the degradation of the scaffolds in phosphate-buffered saline solution. The cell studies revealed that GO incorporation into alginate nanofibers on the surface of the tri-layer scaffolds could enhance cell viability, adhesion and proliferation. Overall, the tri-layered electroconductive alginate-PCL nanofibrous scaffolds could be considered as potential candidates for cardiac tissue regeneration. (c) 2022 Society of Industrial Chemistry.
引用
收藏
页码:1099 / 1108
页数:10
相关论文
共 50 条
  • [41] Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering
    Lee, SH
    Kim, BS
    Kim, SH
    Choi, SW
    Jeong, SI
    Kwon, IK
    Kang, SW
    Nikolovski, J
    Mooney, DJ
    Han, YK
    Kim, YH
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 66A (01) : 29 - 37
  • [42] A Viscoelastic Study of Poly(ε-Caprolactone) Microsphere Sintered Bone Tissue Engineering Scaffold
    Alireza Shahin-Shamsabadi
    Ata Hashemi
    Mohammadreza Tahriri
    Journal of Medical and Biological Engineering, 2018, 38 : 359 - 369
  • [43] Electrospun nanoyarn scaffold for tissue engineering
    Mo, Xiumei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [44] The Tissue Response and Degradation of Electrospun Poly(ε-caprolactone)/Poly(trimethylene-carbonate) Scaffold in Subcutaneous Space of Mice
    Jiang, Tao
    Zhang, Guoquan
    He, Wentong
    Li, Hui
    Jin, Xun
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [45] Fabrication of tri-layered electrospun polycaprolactone mats with improved sustained drug release profile
    Kamath, S. Manjunath
    Sridhar, K.
    Jaison, D.
    Gopinath, V
    Ibrahim, B. K. Mohamed
    Gupta, Nilkantha
    Sundaram, A.
    Sivaperumal, P.
    Padmapriya, S.
    Patil, S. Shantanu
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [46] Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration
    Li, Lingli
    Li, Guang
    Jiang, Jianming
    Liu, Xiaona
    Luo, Li
    Nan, Kaihui
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (02) : 547 - 554
  • [47] Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration
    Lingli Li
    Guang Li
    Jianming Jiang
    Xiaona Liu
    Li Luo
    Kaihui Nan
    Journal of Materials Science: Materials in Medicine, 2012, 23 : 547 - 554
  • [48] Surface collagen functionalization of electrospun poly(vinyl alcohol) scaffold for tissue engineering
    Perez-Nava, Alejandra
    Espino-Saldan, Angeles Edith
    Pereida-Jaramillo, Elizabeth
    Hernandez-Vargas, Julia
    Martinez-Torres, Ataulfo
    Vazquez-Lepe, Milton O.
    Mota-Morales, Josue D.
    Uribe, Bernardo A. Frontana
    Gonzalez-Campos, J. Betzabe
    PROCESS BIOCHEMISTRY, 2023, 126 : 1 - 14
  • [49] Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering
    Chen, Honglin
    Huang, Jin
    Yu, Jiahui
    Liu, Shiyuan
    Gu, Ping
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2011, 48 (01) : 13 - 19
  • [50] Biodegradable electrospun poly(L-lactide-co-ε-caprolactone)/polyethylene glycol/bioactive glass composite scaffold for bone tissue engineering
    de Souza, Joyce R.
    Cardoso, Lais M.
    de Toledo, Priscila T. A.
    Rahimnejad, Maedeh
    Kito, Leticia T.
    Thim, Gilmar P.
    Campos, Tiago M. B.
    Borges, Alexandre L. S.
    Bottino, Marco C.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2024, 112 (05)