MODULAR FORMS INVARIANT UNDER NON-SPLIT CARTAN SUBGROUPS

被引:6
|
作者
Mercuri, Pietro [1 ]
Schoof, Rene [1 ]
机构
[1] 2A Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
RATIONAL-POINTS; CURVES;
D O I
10.1090/mcom/3503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we describe a method for computing a basis for the space of weight 2 cusp forms invariant under a non-split Cartan subgroup of prime level p. As an application we compute, for certain small values of p, explicit equations over Q for the canonical embeddings of the associated modular curves.
引用
收藏
页码:1969 / 1991
页数:23
相关论文
共 50 条
  • [31] η-INVARIANT AND MODULAR FORMS
    Han, Fei
    Zhang, Weiping
    QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (01): : 133 - 142
  • [32] An explicit dimension formula for Siegel cusp forms with respect to the non-split symplectic groups
    Kitayama, Hidetaka
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2011, 63 (04) : 1263 - 1310
  • [33] Normalizers of split Cartan subgroups and supersingular elliptic curves
    Merel, Loic
    DIOPHANTINE GEOMETRY, PROCEEDINGS, 2007, 4 : 237 - 255
  • [34] On a certain non-split cubic surface
    Régis de la Bretèche
    Kevin Destagnol
    Jianya Liu
    Jie Wu
    Yongqiang Zhao
    Science China(Mathematics), 2019, 62 (12) : 2435 - 2446
  • [35] On non-split abelian extensions II
    Snanou, Noureddine
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (09)
  • [36] On the density theorem related to the space of non-split tri-Hermitian forms II
    Yukie, Akihiko
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 221 - 239
  • [37] MODULAR FORMS FOR NONCONGRUENCE SUBGROUPS
    Li, Wen-Ching Winnie
    Long, Ling
    Yang, Zifeng
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (01) : 205 - 221
  • [38] THE SPLIT AND NON-SPLIT TREE (D, C)-NUMBER OF A GRAPH
    Safeer, P. A.
    Sadiquali, A.
    Kumar, K. R. Santhosh
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (03): : 511 - 520
  • [39] Jacobi modular forms on subgroups of the modular group
    Isik, A
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (2-3) : 529 - 535
  • [40] The least non-split prime in a number field
    Kim, Henry H.
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 509 - 513