MACHINE LEARNING MODELS TO PREDICT 24-HOUR URINE ABNORMALITIES FROM ELECTRONIC HEALTH RECORD-DERIVED FEATURES

被引:0
|
作者
Kavoussi, Nicholas
Abraham, Abin
Sui, Wilson
Bejan, Cosmin
Capra, John
Hsi, Ryan
机构
来源
JOURNAL OF UROLOGY | 2021年 / 206卷
关键词
D O I
暂无
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
MP54-19
引用
收藏
页码:E957 / E957
页数:1
相关论文
共 50 条
  • [1] MACHINE LEARNING MODELS SU TO PREDICT KIDNEY STONE COMPOSITION AND 24-HOUR URINE ABNORMALITIES FROM ELECTRONIC HEALTH RECORD-DERIVED FEATURES
    Le, Chi
    Kavoussi, Nicholas
    Sui, Wilson
    Bejan, Cosmin
    Miller, Nicole
    His, Ryan
    [J]. JOURNAL OF UROLOGY, 2020, 203 : E718 - E718
  • [2] MACHINE LEARNING PREDICTION OF SYMPTOMATIC KIDNEY STONE RECURRENCE USING 24-HOUR URINE DATA AND ELECTRONIC HEALTH RECORD DERIVED FEATURES
    Doyle, Patrick
    Gong, Wu
    Hsi, Ryan
    Kavoussi, Nicholas
    [J]. JOURNAL OF UROLOGY, 2023, 209 : E922 - E922
  • [3] Machine Learning Prediction of Kidney Stone Composition Using Electronic Health Record-Derived Features
    Abraham, Abin
    Kavoussi, Nicholas L.
    Sui, Wilson
    Bejan, Cosmin
    Capra, John A.
    Hsi, Ryan
    [J]. JOURNAL OF ENDOUROLOGY, 2022, 36 (02) : 243 - 250
  • [4] A NOVEL MACHINE-LEARNING ALGORITHM TO PREDICT STONE RECURRENCE WITH 24-HOUR URINE DATA
    Shee, Kevin
    Chan, Carter
    Liu, Andrew
    Yang, Heiko
    Sui, Wilson
    Ho, Sunita
    Chi, Thomas
    Stoller, Marshall
    [J]. JOURNAL OF UROLOGY, 2023, 209 : E921 - E922
  • [5] Machine Learning Models to Predict 24 Hour Urinary Abnormalities for Kidney Stone Disease
    Kavoussi, Nicholas L.
    Floyd, Chase
    Abraham, Abin
    Sui, Wilson
    Bejan, Cosmin
    Capra, John A.
    Hsi, Ryan
    [J]. UROLOGY, 2022, 169 : 52 - 57
  • [6] Machine Learning Models to Predict 24 Hour Urinary Abnormalities for Kidney Stone Disease
    Kavoussi, Nicholas L.
    Floyd, Chase
    Abraham, Abin
    Sui, Wilson
    Bejan, Cosmin
    Capra, John A.
    Hsi, Ryan
    [J]. UROLOGY, 2022, 169 : 52 - 57
  • [7] Weighting Primary Care Patient Panel Size: A Novel Electronic Health Record-Derived Measure Using Machine Learning
    Rajkomar, Alvin
    Yim, Joanne Wing Lan
    Grumbach, Kevin
    Parekh, Ami
    [J]. JMIR MEDICAL INFORMATICS, 2016, 4 (04) : 3 - 15
  • [8] CLINICAL STONE RISK FACTORS PREDICT STONE RECURRENCE MORE ACCURATELY THAN 24-HOUR URINE ANALYTE ABNORMALITIES
    Sui, Wilson
    Chang, Kevin
    Mena, Jorge
    Yang, Heiko
    Velasquez, Maria C.
    Stoller, Marshall
    Chi, Thomas
    [J]. JOURNAL OF UROLOGY, 2024, 211 (05): : E743 - E743
  • [9] DO CLEARANCE STUDIES FROM 12-HOUR URINE COLLECTIONS PREDICT THE GFR MEASURED BY STANDARD 24-HOUR COLLECTIONS
    LAI, SM
    PETROSKI, GF
    HEWETT, J
    [J]. CLINICAL RESEARCH, 1994, 42 (03): : A432 - A432
  • [10] DO CLEARANCE STUDIES FROM 12-HOUR URINE COLLECTIONS PREDICT THE GFR MEASURED BY STANDARD 24-HOUR COLLECTIONS
    LAL, SM
    VANSTONE, JC
    ROSS, G
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 1994, 5 (03): : 398 - 398