Switching the Spin-Crossover Phenomenon by Ligand Design on Imidazole-Diazineiron(II) Complexes

被引:16
|
作者
Bibi, Naheed [1 ]
Ratier de Arruda, Eduardo Guimaraes [1 ]
Domingo, Alex [2 ]
Oliveira, Aline Alves [3 ]
Galuppo, Carolina [1 ]
Quan Manh Phung [2 ]
Orra, Naima Mohammed [1 ]
Beron, Fanny [4 ]
Paesano, Andrea, Jr. [3 ]
Pierloot, Kristine [2 ]
Barboza Formiga, Andre Luiz [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Inst Chem, POB 6154, BR-13083970 Campinas, SP, Brazil
[2] Katholieke Univ Leuven, Dept Chem, Celestijnenlaan 200F, B-3001 Leuven, Belgium
[3] Univ Estadual Maringa, Maringa, Parana, Brazil
[4] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, Rua Sergio Buarque de Holanda 777, BR-13083859 Campinas, SP, Brazil
关键词
MULTICONFIGURATIONAL PERTURBATION-THEORY; BASIS-SET CONVERGENCE; SPACE SCF METHOD; FE-II COMPLEXES; TRANSITION-METAL; CRYSTAL-STRUCTURE; CHARGE-TRANSFER; IRON(II) COMPLEXES; ELECTRONIC DELOCALIZATION; NICKEL(II) COMPLEXES;
D O I
10.1021/acs.inorgchem.8b02278
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The iron(II) complexes of two structural isomers of 2-(1H-imidazol-2-yl)diazine reveal how ligand design can be a successful strategy to control the electronic and magnetic properties of complexes by fine-tuning their ligand field. The two isomers only differ in the position of a single diazinic nitrogen atom, having either a pyrazine (Z) or a pyrimidine (M) moiety. However, [Fe(M)(3)](ClO4)(2) is a spin-crossover complex with a spin transition at 241 K, whereas [Fe(Z)(3)](ClO4)(2) has a stable magnetic behavior between 2 and 300 K. This is corroborated by temperature-dependent Mossbauer spectra showing the presence of a quintet and a singlet state in equilibrium. The temperature-dependent single crystal X-ray diffraction results relate the spin-crossover observed in [Fe(M)(3)](ClO4)(2) to changes in the bond distances and angles of the coordination sphere of iron(II), hinting at a stronger sigma donation of ligand Z in comparison to ligand M. The UV/vis spectra of both complexes are solved by means of the multiconfigurational wave-function-based method CASPT2 and confirm their different spin multiplicities at room temperature, as observed in the Mossbauer spectra. Calculations show larger stabilization of the singlet state in [Fe(Z)(3)](2+) than in [Fe(M)(3)](2+), stemming from the slightly stronger ligand field of the former (506 cm(-1) in the singlet). This relatively weak effect is indeed capable of changing the spin multiplicity of the complexes and causes the appearance of the spin transition in the M complex.
引用
收藏
页码:14603 / 14616
页数:14
相关论文
共 50 条
  • [31] Dimerized Spin-Crossover Iron(II) Complexes as Supramolecular Anion Capsules
    Shiga, Takuya
    Oshiro, Emiko
    Nakayama, Naoko
    Mitsumoto, Kiyotaka
    Newton, Graham N.
    Nishikawa, Hiroyuki
    Oshio, Hiroki
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, (5-6) : 781 - 787
  • [32] In Situ NMR Search for Spin-Crossover in Heteroleptic Cobalt(II) Complexes
    Pankratova, Yanina
    Aleshin, Dmitry
    Nikovskiy, Igor
    Novikov, Valentin
    Nelyubina, Yulia
    INORGANIC CHEMISTRY, 2020, 59 (11) : 7700 - 7709
  • [33] Iron(II) Complexes of Tridentate Indazolylpyridine Ligands: Enhanced Spin-Crossover Hysteresis and Ligand-Based Fluorescence
    Santoro, Amedeo
    Cook, Laurence J. Kershaw
    Kulmaczewski, Rafal
    Barrett, Simon A.
    Cespedes, Oscar
    Halcrow, Malcolm A.
    INORGANIC CHEMISTRY, 2015, 54 (02) : 682 - 693
  • [34] Surface stabilisation of the high-spin state of Fe(ii) spin-crossover complexes
    Serra, Alejandro Martinez
    Dhingra, Archit
    Asensio, Maria Carmen
    Real, Jose Antonio
    Royo, Juan Francisco Sanchez
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (21) : 14736 - 14741
  • [35] Nanoparticles of iron(II) spin-crossover
    Forestier, Thibaut
    Mornet, Stephane
    Daro, Nathalie
    Nishihara, Taishi
    Mouri, Shin-ichiro
    Tanaka, Koichiro
    Fouche, Olivier
    Freysz, Eric
    Letard, Jean-Francois
    CHEMICAL COMMUNICATIONS, 2008, (36) : 4327 - 4329
  • [36] Effect of ligand methylation on the spin-switching properties of surface-supported spin-crossover molecules
    Ossinger, Sascha
    Kipgen, Lalminthang
    Naggert, Holger
    Bernien, Matthias
    Britton, Andrew J.
    Nickel, Fabian
    Arruda, Lucas M.
    Kumberg, Ivar
    Engesser, Tobias A.
    Golias, Evangelos
    Naether, Christian
    Tuczek, Felix
    Kuch, Wolfgang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (11)
  • [37] Ligand Substituent Effects on the Spin-Crossover Behaviors of Dinuclear Iron(II) Compounds
    Wang, Chun-Feng
    Yao, Zi-Shuo
    Yang, Guo-Yu
    Tao, Jun
    INORGANIC CHEMISTRY, 2019, 58 (02) : 1309 - 1316
  • [38] Rational Design of Iron Spin-Crossover Complexes Using Heteroscorpionate Chelates
    Desrochers, Patrick J.
    Abdulrahim, Ali
    Demaree, Katherine R.
    Fortner, Joseph A.
    Freeman, Jamie D.
    Long, Makenzie Provorse
    Martin, Madison E.
    Gomez-Garcia, Carlos J.
    Gerasimchuk, Nikolay
    INORGANIC CHEMISTRY, 2022, 61 (47) : 18907 - 18922
  • [39] Asymmetric Design of Spin-Crossover Complexes to Increase the Volatility for Surface Deposition
    Gakiya-Teruya, Miguel
    Jiang, Xuanyuan
    Le, Duy
    Ungor, Okten
    Durrani, Abdullah J.
    Koptur-Palenchar, John J.
    Jiang, Jun
    Jiang, Tao
    Meisel, Mark W.
    Cheng, Hai-Ping
    Zhang, Xiao-Guang
    Zhang, Xiao-Xiao
    Rahman, Talat S.
    Hebard, Arthur F.
    Shatruk, Michael
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (36) : 14563 - 14572
  • [40] Aggregation-Induced Spin-Crossover Switching in a Spin-Labile Iron(II) Complex
    Gao, Fangqing
    Wang, Binbin
    Liu, Yan
    Wang, Tengli
    Wang, Liang
    Zou, Li-Fei
    Xue, Shufang
    Guo, Yunnan
    INORGANIC CHEMISTRY, 2025, 64 (12) : 5904 - 5912