Finite-size scaling of synchronized oscillation on complex networks

被引:36
|
作者
Hong, Hyunsuk [1 ,2 ]
Park, Hyunggyu [3 ]
Tang, Lei-Han [4 ]
机构
[1] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, RINPAC, Jeonju 561756, South Korea
[3] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
[4] Hong Kong Baptist Univ, Dept Phys, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1103/PhysRevE.76.066104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The onset of synchronization in a system of random frequency oscillators coupled through a random network is investigated. Using a mean-field approximation, we characterize sample-to-sample fluctuations for networks of finite size, and derive the corresponding scaling properties in the critical region. For scale-free networks with the degree distribution P(k) similar to k(-gamma) at large k, we found that the finite-size exponent (nu) over bar takes on the value 5/2 when gamma > 5, the same as in the globally coupled Kuramoto model. For highly heterogeneous networks (3 <gamma < 5), (nu) over bar and the order parameter exponent beta depend on gamma. The analytical expressions for these exponents obtained from the mean-field theory are shown to be in excellent agreement with data from extensive numerical simulations.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] FINITE-SIZE SCALING FOR POTTS MODELS
    BORGS, C
    KOTECKY, R
    MIRACLESOLE, S
    JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) : 529 - 551
  • [32] FINITE-SIZE SCALING IN THE MULTIPARTICLE PRODUCTION
    BOZEK, P
    PLOSZAJCZAK, M
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 56 (03): : 473 - 477
  • [33] PERCOLATION OF HYPERSURFACES AND FINITE-SIZE SCALING
    KERTESZ, J
    HERRMANN, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (17): : 1109 - 1112
  • [34] FINITE-SIZE SCALING AND CRITICAL NUCLEATION
    MON, KK
    JASNOW, D
    PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2983 - 2986
  • [35] FINITE-SIZE SCALING - NEW RESULTS
    PRIVMAN, V
    PHYSICA A, 1991, 177 (1-3): : 241 - 246
  • [36] FINITE-SIZE SCALING FOR CRITICAL FILMS
    KRECH, M
    DIETRICH, S
    PHYSICAL REVIEW LETTERS, 1991, 66 (03) : 345 - 348
  • [37] Finite-size scaling in stick percolation
    Li, Jiantong
    Zhang, Shi-Li
    PHYSICAL REVIEW E, 2009, 80 (04)
  • [38] Finite-size scaling in the Kuramoto model
    Coletta, Tommaso
    Delabays, Robin
    Jacquod, Philippe
    PHYSICAL REVIEW E, 2017, 95 (04)
  • [39] FINITE-SIZE SCALING IN ARBITRARY DIMENSIONS
    SINGH, S
    PATHRIA, RK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (20): : 4619 - 4626
  • [40] Extracting critical exponents by finite-size scaling with convolutional neural networks
    Li, Zhenyu
    Luo, Mingxing
    Wan, Xin
    PHYSICAL REVIEW B, 2019, 99 (07)