Equipped posets of finite growth

被引:0
|
作者
Zavadskij, A [1 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Bogota, Colombia
关键词
REPRESENTATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper a finite growth criterion for equipped posets is proved and a complete list of sincere equipped posets of finite growth is obtained.
引用
收藏
页码:363 / 396
页数:34
相关论文
共 50 条
  • [41] SOME CORRELATION INEQUALITIES IN FINITE POSETS
    BRIGHTWELL, GR
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1986, 2 (04): : 387 - 402
  • [42] Ramsey Properties of Finite Posets II
    Miodrag Sokić
    Order, 2012, 29 : 31 - 47
  • [43] Algebraic properties and dismantlability of finite posets
    LACIM - Dept. de Mathematiques, Univ. du Quebec a Montreal, C.P. 8888 succ. Centre-Ville, Montréal, Que. H3C 3P8, Canada
    不详
    Discrete Math, 1-3 (89-99):
  • [44] Implication in finite posets with pseudocomplemented sections
    Chajda, Ivan
    Laenger, Helmut
    SOFT COMPUTING, 2022, 26 (13) : 5945 - 5953
  • [45] CATEGORICAL PROPERTIES OF THE ALGORITHM OF DIFFERENTIATION D-VIII FOR EQUIPPED POSETS
    Moreno Canadas, Agustin
    Marin Gaviria, Isaias David
    Fernandez Espinosa, Pedro Fernando
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 29 (02): : 133 - 156
  • [46] Ramsey Properties of Finite Posets II
    Sokic, Miodrag
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (01): : 31 - 47
  • [47] Bipartite posets of finite prinjective type
    von Hohne, HJ
    Simson, D
    JOURNAL OF ALGEBRA, 1998, 201 (01) : 86 - 114
  • [48] Polyhedral products over finite posets
    Kishimoto, Daisuke
    Levi, Ran
    KYOTO JOURNAL OF MATHEMATICS, 2022, 62 (03) : 615 - 654
  • [49] The logic of orthomodular posets of finite height
    Chajda, Ivan
    Laenger, Helmut
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (01) : 143 - 154
  • [50] Implication in finite posets with pseudocomplemented sections
    Ivan Chajda
    Helmut Länger
    Soft Computing, 2022, 26 : 5945 - 5953