Carbon nanofiber surface roughness increases osteoblast adhesion

被引:0
|
作者
Ellison, KS [1 ]
Price, RL [1 ]
Haberstroh, KM [1 ]
Webster, TJ [1 ]
机构
[1] Purdue Univ, Dept Biomed Engn, W Lafayette, IN 47907 USA
来源
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The present study demonstrated for the first time desirable cytocompatibility properties of carbon nanofibers pertinent for bone prosthetic applications. Specifically, osteoblast (bone-forming cells), fibroblast (cells contributing to callus formation and fibrous encapsulation events that result in implant loosening), chondrocyte (cartilage-forming cells), and smooth muscle cell (for comparison purposes) adhesion were determined on carbon nanofibers in the present in vitro study. Results provided evidence that nanometer dimension carbon fibers promoted select osteoblast adhesion, in contrast to the performance of conventional carbon fibers. Moreover, adhesion of other cells was not influenced by carbon fiber dimensions. To determine properties that selectively enhanced osteoblast adhesion, similar cell adhesion assays were performed on poly-lactic-co-glycolic (PLGA) casts of carbon fiber compacts previously tested. Compared to PLGA casts of conventional carbon fibers, results provided the first evidence of enhanced select osteoblast adhesion on PLGA casts of nanophase carbon fibers. The summation of these results demonstrate that due to a high degree of nanometer surface roughness, carbon fibers and PLGA with nanometer surface dimensions may be optimal materials to selectively increase osteoblast adhesion necessary for successful orthopedic implant applications.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [31] The influence of surface roughness and adhesion on particle rolling
    Wilson, R.
    Dini, D.
    Van Wachem, B.
    POWDER TECHNOLOGY, 2017, 312 : 321 - 333
  • [32] Influence of surface roughness on the adhesion of elastic films
    Palasantzas, G
    De Hosson, JTM
    PHYSICAL REVIEW E, 2003, 67 (02): : 216041 - 216046
  • [33] Cell adhesion on Ti surface with controlled roughness
    Burgos-Asperilla, Laura
    Cristina Garcia-Alonso, M.
    Lorenza Escudero, M.
    Alonso, Concepcion
    REVISTA DE METALURGIA, 2015, 51 (02)
  • [34] Effect of surface roughness on adhesion of graphene membranes
    Gao, Wei
    Huang, Rui
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (45)
  • [35] Adhesion and Proliferation of Osteoblast on the Amidation Surface of Polylactide Film
    Tian Ye
    Wang Ying-Jun
    Zhou Chang-Ren
    Zeng Qing-Hui
    Tan Guo-Xing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2009, 30 (12): : 2491 - 2495
  • [36] The Effect of Thymosin β4 for Osteoblast Adhesion on Titanium Surface
    Choi, Baik-Dong
    Jeong, Soon-Jeong
    Lee, Hye-Yon
    Lim, Do-Seon
    Lee, Byung-Ho
    Bae, Chun-Sik
    Jeong, Moon-Jin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (08) : 5663 - 5667
  • [37] The effect of surface roughness and viscoelasticity on rubber adhesion
    Tiwari, A.
    Dorogin, L.
    Bennett, A. I.
    Schulze, K. D.
    Sawyer, W. G.
    Tahir, M.
    Heinrichc, G.
    Persson, B. N. J.
    SOFT MATTER, 2017, 13 (19) : 3602 - 3621
  • [38] The effect of surface roughness on the adhesion of elastic solids
    Persson, BNJ
    Tosatti, E
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (12): : 5597 - 5610
  • [39] The effect of surface roughness on fibroblast adhesion in vitro
    Richards, RG
    INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 1996, 27 : 38 - 43
  • [40] Adhesion: role of bulk viscoelasticity and surface roughness
    Lorenz, B.
    Krick, B. A.
    Mulakaluri, N.
    Smolyakova, M.
    Dieluweit, S.
    Sawyer, W. G.
    Persson, B. N. J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (22)