Optimal control for multi-phase fluid Stokes problems

被引:7
|
作者
Kunisch, Karl [1 ]
Lu, Xiliang [2 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
关键词
Multi-phase fluids; Optimal control; Optimality system; Artificial diffusion; Renormalized solution; EXISTENCE THEOREM; FLOWS;
D O I
10.1016/j.na.2010.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal control for a system consistent of the viscosity dependent Stokes equations coupled with a transport equation for the viscosity is studied. Motivated by a lack of sufficient regularity of the adjoint equations, artificial diffusion is introduced to the transport equation. The asymptotic behavior of the regularized system is investigated. Optimality conditions for the regularized optimal control problems are obtained and again the asymptotic behavior is analyzed. The lack of uniqueness of solutions to the underlying system is another source of difficulties for the problem under investigation. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:585 / 599
页数:15
相关论文
共 50 条
  • [21] Incremental Identification of Fluid Multi-Phase Reaction Systems
    Michalik, Claas
    Brendel, Marc
    Marquardt, Wolfgang
    AICHE JOURNAL, 2009, 55 (04) : 1009 - 1022
  • [22] Desensitized Optimal Trajectory for Multi-phase Lunar Landing
    Mathavaraj, S.
    Padhi, Radhakant
    IFAC PAPERSONLINE, 2017, 50 (01): : 6105 - 6109
  • [23] An accurate integral equation method for simulating multi-phase Stokes flow
    Ojala, Rikard
    Tornberg, Anna-Karin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 145 - 160
  • [24] Interface reconstruction in multi-fluid, multi-phase flow simulations
    Garimella, RV
    Dyadechko, V
    Swartz, BK
    Shashkov, MJ
    Proceedings of the 14th International Meshing Roundtable, 2005, : 19 - 32
  • [25] Gradient Estimates for Multi-Phase Problems in Campanato Spaces
    Fang, Yuzhou
    Radulescu, Vicentiu D.
    Zhang, Chao
    Zhang, Xia
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (03) : 1079 - 1099
  • [26] A multi-phase model for product part change problems
    Wang, H. S.
    Che, Z. H.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2008, 46 (10) : 2797 - 2825
  • [27] A Multi-Phase Method for Euclidean Traveling Salesman Problems
    Hugo Pacheco-Valencia, Victor
    Vakhania, Nodari
    Angel Hernandez-Mira, Frank
    Alberto Hernandez-Aguilar, Jose
    AXIOMS, 2022, 11 (09)
  • [28] Regularity for multi-phase problems at nearly linear growth
    De Filippis, Filomena
    Piccinini, Mirco
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 410 : 832 - 868
  • [29] The control method for the multi-phase traffic model
    Liu, Yi
    Cheng, Rong-Jun
    Ma, Yan-Qiang
    Ge, Hong-Xia
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (10):
  • [30] Paste engineering: Multi-Phase materials and multi-phase flows
    Wilson, D. I.
    Rough, S. L.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2012, 90 (02): : 277 - 289