Parameter estimation for SPDEs based on discrete observations in time and space

被引:15
|
作者
Hildebrandt, Florian [1 ]
Trabs, Mathias [1 ]
机构
[1] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 01期
关键词
Central limit theorems; infill asymptotics; optimal rate of convergence; realized quadratic variation; stochastic partial differential equations; STATISTICAL-INFERENCE;
D O I
10.1214/21-EJS1848
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Parameter estimation for a parabolic linear stochastic partial differential equation in one space dimension is studied observing the solution field on a discrete grid in a fixed bounded domain. Considering an infill asymptotic regime in both coordinates, we prove central limit theorems for realized quadratic variations based on temporal and spatial increments as well as on double increments in time and space. Resulting method of moments estimators for the diffusivity and the volatility parameter inherit the asymptotic normality and can be constructed robustly with respect to the sampling frequencies in time and space. Upper and lower bounds reveal that in general the optimal convergence rate for joint estimation of the parameters is slower than the usual parametric rate. The theoretical results are illustrated in a numerical example.
引用
收藏
页码:2716 / 2776
页数:61
相关论文
共 50 条
  • [41] On the recursive parameter estimation in the general discrete time statistical model
    Sharia, T
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 73 (02) : 151 - 172
  • [42] Nested particle filters for online parameter estimation in discrete-time state-space Markov models
    Crisan, Dan
    Miguez, Joaquin
    [J]. BERNOULLI, 2018, 24 (4A) : 3039 - 3086
  • [43] Efficient parameter estimation for parabolic SPDEs based on a log-linear model for realized volatilities
    Markus Bibinger
    Patrick Bossert
    [J]. Japanese Journal of Statistics and Data Science, 2023, 6 : 407 - 429
  • [44] Parameter estimation for threshold Ornstein-Uhlenbeck processes from discrete observations
    Hu, Yaozhong
    Xi, Yuejuan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
  • [45] Asymptotic properties for the parameter estimation in Ornstein-Uhlenbeck process with discrete observations
    Jiang, Hui
    Liu, Hui
    Zhou, Youzhou
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3192 - 3229
  • [46] A Discrete-Time Parameter Estimation Based Adaptive Actuator Failure Compensation Control Scheme
    Tan, Chang
    Qi, Ruiyun
    Tao, Gang
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 3754 - 3759
  • [47] ESTIMATION OF THE PARAMETRIC REGRESSION WITH A PULSE NOISE BY DISCRETE TIME OBSERVATIONS
    Konev, Victor Vasil'evich
    Pchelintsev, Evgeny Anatol'evich
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2012, (17): : 20 - 35
  • [48] FIXED-POINT BASED AUTOREGRESSIVE PARAMETER ESTIMATION FOR SPACE TIME ADAPTIVE PROCESSING
    Petitjean, Julien
    Grivel, Eric
    Roussilhe, Patrick
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2754 - 2757
  • [49] Optimal estimation of Poisson rate from discrete time observations
    Elliott, RJ
    Krishnamurthy, V
    Manton, JH
    [J]. ICC'97: 1997 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS - TOWARDS THE KNOWLEDGE MILLENNIUM, CONFERENCE RECORD - VOLS 1-3, 1997, : 1392 - 1395
  • [50] A discrete-time parameter estimation based adaptive actuator failure compensation control scheme
    Tan, Chang
    Tao, Gang
    Qi, Ruiyun
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (02) : 276 - 289