Bernstein functions of the Laplacian;
Nonlocal semipositone problems;
Long time behaviour;
Nonlocal Fisher-KPP;
Bifurcation;
Variable order nonlocal kernel;
DIRICHLET HEAT KERNEL;
POSITIVE SOLUTIONS;
PRINCIPAL EIGENVALUE;
FRACTIONAL LAPLACIAN;
OPERATORS;
LEVY;
REGULARITY;
DYNAMICS;
UNIQUENESS;
DIFFUSION;
D O I:
10.1016/j.na.2021.112599
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study a class of nonlocal reaction-diffusion equations with a harvesting term where the nonlocal operator is given by a Bernstein function of the Laplacian. In particular, it includes the fractional Laplacian, fractional relativistic operators, sum of fractional Laplacians of different order etc. We study the existence, uniqueness and multiplicity results of the solutions to the steady state equation. We also consider the parabolic counterpart and establish the long time asymptotic of the solutions. Our proof techniques rely on both analytic and probabilistic arguments. (C) 2021 Elsevier Ltd. All rights reserved.
机构:
Univ Rouen Normandie, CNRS, Lab Math Raphael Salem, St Etienne Du Rouvray, France
INRAE, BioSP, F-84914 Avignon, FranceUniv Rouen Normandie, CNRS, Lab Math Raphael Salem, St Etienne Du Rouvray, France
Alfaro, Matthieu
Giletti, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, IECL, BP 70239, F-54506 Vandoeuvre Les Nancy, FranceUniv Rouen Normandie, CNRS, Lab Math Raphael Salem, St Etienne Du Rouvray, France
Giletti, Thomas
Kim, Yong-Jung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South KoreaUniv Rouen Normandie, CNRS, Lab Math Raphael Salem, St Etienne Du Rouvray, France
Kim, Yong-Jung
Peltier, Gwenael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Cite, Sorbonne Univ, INRIA, Lab JL Lions,CNRS, F-75005 Paris, FranceUniv Rouen Normandie, CNRS, Lab Math Raphael Salem, St Etienne Du Rouvray, France
机构:
Univ Talca, Inst Matemat & Fis, Talca, Chile
Warsaw Univ Technol, Dept Math & Informat Sci, PL-00661 Warsaw, PolandUniv Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan