Nonparametric predictive regression

被引:25
|
作者
Kasparis, Ioannis [1 ]
Andreou, Elena [1 ,2 ]
Phillips, Peter C. B. [3 ,4 ,5 ,6 ]
机构
[1] Univ Cyprus, CY-1678 Nicosia, Cyprus
[2] CERP, Toronto, ON, Canada
[3] Yale Univ, New Haven, CT 06520 USA
[4] Univ Auckland, Auckland 1, New Zealand
[5] Univ Southampton, Southampton SO9 5NH, Hants, England
[6] Singapore Management Univ, Singapore 178902, Singapore
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Fractional Ornstein-Uhlenbeck process; Functional regression; Nonparametric predictability test; Nonparametric regression; Stock returns; Predictive regression; ASYMPTOTIC THEORY; STOCK RETURNS; COINTEGRATION; INFERENCE; MISSPECIFICATION; PREDICTABILITY; APPROXIMATION; CONVERGENCE; FUNCTIONALS; INTEGRATION;
D O I
10.1016/j.jeconom.2014.05.015
中图分类号
F [经济];
学科分类号
02 ;
摘要
A unifying framework for inference is developed in predictive regressions where the predictor has unknown integration properties and may be stationary or nonstationary. Two easily implemented nonparametric F-tests are proposed. The limit distribution of these predictive tests is nuisance parameter free and holds for a wide range of predictors including stationary as well as non-stationary fractional and near unit root processes. Asymptotic theory and simulations show that the proposed tests are more powerful than existing parametric predictability tests when deviations from unity are large or the predictive regression is nonlinear. Empirical illustrations to monthly SP500 stock returns data are provided. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:468 / 494
页数:27
相关论文
共 50 条
  • [31] Equidistributed designs in nonparametric regression
    Rafajlowicz, E
    Schwabe, R
    [J]. STATISTICA SINICA, 2003, 13 (01) : 129 - 142
  • [32] An Algorithm of Nonparametric Quantile Regression
    Huang, Mei Ling
    Han, Yansan
    Marshall, William
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2023, 17 (02)
  • [33] Nonparametric regression with singular design
    Lu, ZQ
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1999, 70 (02) : 177 - 201
  • [34] Test of symmetry in nonparametric regression
    Leblanc, F
    Lepski, OV
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2002, 47 (01) : 34 - 52
  • [35] Bayesian nonparametric covariance regression
    Fox, Emily B.
    Dunson, David B.
    Airoldi, Edoardo M.
    [J]. Journal of Machine Learning Research, 2015, 16 : 2501 - 2542
  • [36] An Interval Nonparametric Regression Method
    Fagundes, Roberta A. de A.
    Queiroz Filho, Ricardo J. A.
    de Souza, Renata M. C. R.
    Cysneiros, Francisco Jose A.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [37] NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTION
    SABRY, H
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (20): : 941 - 944
  • [38] NONPARAMETRIC REGRESSION IN CURVE FITTING
    MOUSSA, MAA
    CHEEMA, MY
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1992, 41 (02) : 209 - 225
  • [39] Nonparametric circular quantile regression
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 170 : 1 - 14
  • [40] Nonparametric Regression with Common Shocks
    Souza-Rodrigues, Eduardo A.
    [J]. ECONOMETRICS, 2016, 4 (03)