Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering

被引:97
|
作者
Chen, Honglin [1 ,2 ]
Huang, Xiaobin [2 ]
Zhang, Minmin [3 ]
Damanik, Febriyani [1 ]
Baker, Matthew B. [1 ]
Leferink, Anne [1 ]
Yuan, Huipin [1 ]
Truckenmuller, Roman [1 ]
van Blitterswijk, Clemens [1 ]
Moroni, Lorenzo [1 ]
机构
[1] MERLN Inst Technol Inspired Regenerat Med, Dept Complex Tissue Regenerat, NL-6200 MD Maastricht, Netherlands
[2] Univ Twente, MIRA Inst Biomed Technol & Tech Med, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Res Inst, NL-7500 AE Enschede, Netherlands
关键词
Surface roughness; Tissue engineering; Scaffold; Cell differentiation; Human mesenchymal stromal cells; MESENCHYMAL STEM-CELLS; OSTEOGENIC DIFFERENTIATION; NANOFIBROUS SCAFFOLDS; RELATIVE-HUMIDITY; FIBER DIAMETER; STROMAL CELLS; PORE-SIZE; IN-VITRO; MORPHOLOGY; ROUGHNESS;
D O I
10.1016/j.actbio.2017.07.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electrospun scaffolds provide a promising approach for tissue engineering as they mimic the physical properties of extracellular matrix. Previous studies have demonstrated that electrospun scaffolds with porous features on the surface of single fibers, enhanced cellular attachment and proliferation. Yet, little is known about the effect of such topographical cues on cellular differentiation. Here, we aimed at investigating the influence of surface roughness of electrospun scaffolds on skeletal differentiation of human mesenchymal stromal cells (hMSCs). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the surface nanoroughness of fibers was successfully regulated via humidity control of the electrospinning environment. Gene expression analysis revealed that a higher surface roughness (roughness average (Ra) = 71.0 +/- 11.0 nm) supported more induction of osteogenic genes such as osteopontin (OPN), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2), while a lower surface roughness (Ra = 14.3 +/- 2.5 nm) demonstrated higher expression of other osteogenic genes including bone sialoprotein (BSP), collagen type I (COL1A1) and osteocalcin (OCN). Interestingly, a lower surface roughness (Ra = 14.3 +/- 2.5 nm) better supported chondrogenic gene expression of hMSCs at day 7 compared to higher surface roughness (Ra = 71.0 +/- 11.0 nm). Taken together, modulating surface roughness of 3D scaffolds appears to be a significant factor in scaffold design for the control of skeletal differentiation of hMSCs. Statement of Significance Tissue engineering scaffolds having specific topographical cues offer exciting possibilities for stimulating cells differentiation and growth of new tissue. Although electrospun scaffolds have been extensively investigated in tissue engineering and regenerative medicine, little is known about the influence of introducing nanoroughness on their surface for cellular differentiation. The present study provides a method to engineer electrospun scaffolds with tailoring surface nanoroughness and investigates the effect of such topographical cues on the process of human mesenchymal stromal cells differentiation into osteoblasts and chondrocytes linages. This strategy may help the design of nanostructured scaffolds for skeletal tissue engineering. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 93
页数:12
相关论文
共 50 条
  • [21] Electrospun polycaprolactone scaffolds for tissue engineering: a review
    Janmohammadi, M.
    Nourbakhsh, M. S.
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (09) : 527 - 539
  • [22] Tissue engineering using electrospun functionalizable scaffolds
    Spano, F.
    Liley, M.
    Hinderling, C.
    Sigrist, H.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 922 - 922
  • [23] Electrospun piezoelectric scaffolds for cardiac tissue engineering
    Gomes, Mariana Ramalho
    Ferreira, Frederico Castelo
    Sanjuan-Alberte, Paola
    BIOMATERIALS ADVANCES, 2022, 137
  • [24] Electrospun nanofibrous scaffolds and corneal tissue engineering
    Salehi, S.
    Barners, T.
    Gutmann, J.
    Fuchsluger, T.
    ACTA OPHTHALMOLOGICA, 2014, 92
  • [25] Electrospun Nanofibers as Scaffolds for Skin Tissue Engineering
    Sundaramurthi, Dhakshinamoorthy
    Krishnan, Uma Maheswari
    Sethuraman, Swaminathan
    POLYMER REVIEWS, 2014, 54 (02) : 348 - 376
  • [26] Electrospun nanostructured scaffolds for bone tissue engineering
    Prabhakaran, Molamma P.
    Venugopal, J.
    Ramakrishna, S.
    ACTA BIOMATERIALIA, 2009, 5 (08) : 2884 - 2893
  • [27] Electrospun Composite Nanofibrous Scaffolds for Tissue Engineering
    Kang, Inn-Kyu
    Kim, Jung Chul
    BIOMATERIALS IN ASIA: IN COMMEMORATION OF THE 1ST ASIAN BIOMATERIALS CONGRESS, 2008, : 194 - +
  • [28] Electrospun nanostructured scaffolds for tissue engineering applications
    Martins, Albino
    Araujo, Jose V.
    Reis, Rui L.
    Neves, Nuno M.
    NANOMEDICINE, 2007, 2 (06) : 929 - 942
  • [29] Electrospun Scaffolds for Corneal Tissue Engineering: A Review
    Kong, Bin
    Mi, Shengli
    MATERIALS, 2016, 9 (08):
  • [30] Tailoring Fiber Diameter in Electrospun Poly(ε-Caprolactone) Scaffolds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering
    Balguid, Angelique
    Mol, Anita
    van Marion, Mieke H.
    Bank, Ruud A.
    Bouten, Carlijn V. C.
    Baaijens, Frank P. T.
    TISSUE ENGINEERING PART A, 2009, 15 (02) : 437 - 444