Finite-Temperature Equation of State of Polarized Fermions at Unitarity

被引:26
|
作者
Rammelmueller, Lukas [1 ,2 ]
Loheac, Andrew C. [3 ]
Drut, Joaquin E. [3 ]
Braun, Jens [1 ,4 ,5 ]
机构
[1] Tech Univ Darmstadt, Theoriezentrum, Inst Kernphys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany
[3] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
[4] Facil Antiproton & Ion Res Europe GmbH, FAIR, Planckstr 1, D-64291 Darmstadt, Germany
[5] GSI Darmstadt, ExtreMe Matter Inst EMMI, Planckstr 1, D-64291 Darmstadt, Germany
基金
美国国家科学基金会;
关键词
QUANTUM-FIELD THEORIES; VOLUME DEPENDENCE; ENERGY-SPECTRUM; ULTRACOLD GASES; SUPERCONDUCTORS; THERMODYNAMICS; TRANSITION; EXPANSION; LATTICE; QCD;
D O I
10.1103/PhysRevLett.121.173001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study in a nonperturbative fashion the thermodynamics of a unitary Fermi gas over a wide range of temperatures and spin polarizations. To this end, we use the complex Langevin method, a first principles approach for strongly coupled systems. Specifically, we show results for the density equation of state, the magnetization, and the magnetic susceptibility. At zero polarization, our results agree well with state-of-the-art results for the density equation of state and with experimental data. At finite polarization and low fugacity, our results are in excellent agreement with the third-order virial expansion. In the fully quantum mechanical regime close to the balanced limit, the critical temperature for superfluidity appears to depend only weakly on the spin polarization.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Finite-Temperature Micromagnetism
    Skomski, Ralph
    Kumar, Pankaj
    Hadjipanayis, George C.
    Sellmyer, D. J.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (07) : 3229 - 3232
  • [32] Finite-temperature regularization
    Fosco, CD
    Schaposnik, FA
    PHYSICS LETTERS B, 2002, 547 (1-2) : 69 - 78
  • [33] PIONS AT FINITE-TEMPERATURE
    SONG, CS
    PHYSICAL REVIEW D, 1994, 49 (03) : 1556 - 1565
  • [34] SPHALERONS AT FINITE-TEMPERATURE
    BRAIBANT, S
    BRIHAYE, Y
    KUNZ, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (31): : 5563 - 5574
  • [35] PROJECTION AT FINITE-TEMPERATURE
    ROSSIGNOLI, R
    RING, P
    ANNALS OF PHYSICS, 1994, 235 (02) : 350 - 389
  • [36] SKYRMIONS AT FINITE-TEMPERATURE
    DEY, JS
    EISENBERG, JM
    PHYSICS LETTERS B, 1994, 334 (3-4) : 290 - 294
  • [37] Finite-temperature bosonization
    Bowen, G
    Gulácsi, M
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2001, 81 (10): : 1409 - 1442
  • [38] FINITE-TEMPERATURE RENORMALIZATION-GROUP EQUATION IN QCD .2.
    FUJIMOTO, Y
    YAMADA, H
    PHYSICS LETTERS B, 1988, 200 (1-2) : 167 - 170
  • [39] Integrating the finite-temperature wave equation across the plasma/vacuum interface
    Van Eester, D
    Koch, R
    PLASMA PHYSICS AND CONTROLLED FUSION, 2001, 43 (06) : 779 - 794
  • [40] Finite-temperature Extension for Cold Neutron Star Equations of State
    Raithel, Carolyn A.
    Ozel, Feryal
    Psaltis, Dimitrios
    ASTROPHYSICAL JOURNAL, 2019, 875 (01):