Discrete-time adaptive backstepping control: Application to pumping station

被引:7
|
作者
Chakchouk, Wael [1 ]
Chrouta, Jaouher [1 ]
Ben Regaya, Chiheb [1 ]
Zaafouri, Abderrahmen [1 ]
Sellami, Anis [1 ]
机构
[1] Univ Tunis, Higher Natl Engn Sch Tunis ENSIT, LISIER, Ave Taha Hussein, Tunis 1008, Tunisia
关键词
Discrete-time system; pumping station; backstepping control; Lyapunov function; sign function; pressure control; digital signal processor; dSPACE DS1104; GLOBAL STABILIZATION; SPEED CONTROL; FUZZY; SYSTEMS; IDENTIFICATION; DESIGN; INPUT;
D O I
10.1177/0959651817744959
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes an application of a discrete-time adaptive backstepping control strategy for a hydraulic process pumping station. The proposed solution leads to improved control system performances in terms of pressure and flow tracking in transient and standstill operation and improvement of pressure response time. The proposed design methodology is based on accurate model for pumping station, which is developed in previous works using fuzzy-C means algorithm. The control law design is based on discrete-time adaptive backstepping control, which is developed in the sense of Lyapunov stability theory using sign function, in order to satisfy various objectives of a stable pumping station like the asymptotic stability of the tracking error. To validate the proposed solution, simulation and experimental tests are made and analyzed. Compared to the conventional proportional-integral approach, the results show that the discrete-time adaptive backstepping control allows exhibiting excellent transient response over a wide range of operating conditions and especially is easier to be implemented in practice.
引用
收藏
页码:683 / 694
页数:12
相关论文
共 50 条