Evidence for surfactant solubilization of plant epicuticular wax

被引:41
|
作者
Tamura, H
Knoche, M
Bukovac, MJ [1 ]
机构
[1] Michigan State Univ, Dept Hort, E Lansing, MI 48824 USA
[2] Meijo Univ, Dept Agr Chem, Nagoya, Aichi 468, Japan
[3] Univ Halle Wittenberg, Inst Agron & Crop Sci, Dept Hort, D-06099 Halle, Germany
关键词
cuticular penetration; micelles; fluorescence quenching; tomato; Triton X-100; Lycopersicon esculentum; Brassica oleracea; broccoli;
D O I
10.1021/jf000608r
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The solubilization of isolated, reconstituted tomato (Lycopersicon esculentum Mill.) fruit and broccoli (Brassica oleracaea var. botrytis L.) leaf epicuticular waxes (ECW) by nonionic octylphenoxypolyethoxy ethanol surfactant (Triton X-100) was demonstrated in a model system by TLC and fluorescence analysis using pyrene as a fluorescent probe. ECW was solubilized at or above the surfactant critical micelle concentration; solubilization increased with an increase in micelle concentration. As shown by the fluorescence quenching of pyrene, surfactant solubilization of the ECW increased rapidly for the first 12 h, then approached a plateau, increased linearly with an increase in temperature (22-32 degreesC), and decreased linearly with the log of the polyoxyethylene chain length (range 5-40 oxyethylenes). These data are discussed in relation to surfactant effects on phytotoxicity and performance of foliar spray application of agrochemicals.
引用
收藏
页码:1809 / 1816
页数:8
相关论文
共 50 条
  • [1] Selective solubilization of tomato fruit epicuticular wax constituents by Triton X-100 surfactant
    Tamura, H
    Knoche, M
    Hayashi, Y
    Bukovac, MJ
    [J]. JOURNAL OF PESTICIDE SCIENCE, 2001, 26 (01): : 16 - 20
  • [2] SURFACTANT-INDUCED PHYTOTOXICITY - EVIDENCE FOR INTERACTION WITH EPICUTICULAR WAX FINE-STRUCTURE
    KNOCHE, M
    NOGA, G
    LENZ, F
    [J]. CROP PROTECTION, 1992, 11 (01) : 51 - 56
  • [3] Modelling the plant epicuticular layer with wax films
    Ly, Stephanie
    Edwards, Annabel
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [4] Modeling optical properties of plant epicuticular wax
    Bukhanov, Eugene
    Gurevich, Yuru
    Krakhalev, Mikhail
    Shabanov, Dmitry
    [J]. 2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [5] Phytotoxicity Induced by Herbicide and Surfactant on stomata and epicuticular wax of Wheat
    Yilmaz, Gulden
    Dane, Feruzan
    [J]. ROMANIAN BIOTECHNOLOGICAL LETTERS, 2012, 17 (06): : 7757 - 7765
  • [6] QUANTITATIVE-EVALUATION OF EPICUTICULAR WAX ALTERATIONS AS INDUCED BY SURFACTANT TREATMENT
    NOGA, G
    WOLTER, M
    BARTHLOTT, W
    PETRY, W
    [J]. ANGEWANDTE BOTANIK, 1991, 65 (3-4): : 239 - 252
  • [7] The interactions between surfactants and the epicuticular wax on soybean or weed leaves: Maximal crop protection with minimal wax solubilization
    Damato, Tatiana Cardoso
    Carrasco, Leticia D. M.
    Carmona-Ribeiro, Ana Maria
    Luiz, Ricardo Vagner
    Godoy, Roberta
    Petri, Denise F. S.
    [J]. CROP PROTECTION, 2017, 91 : 57 - 65
  • [8] Thermotropic mesomorphism of a model system for the plant epicuticular wax layer
    Carreto, L
    Almeida, AR
    Fernandes, AC
    Vaz, WLC
    [J]. BIOPHYSICAL JOURNAL, 2002, 82 (01) : 530 - 540
  • [9] EVIDENCE FOR RECRYSTALLIZATION OF EPICUTICULAR WAX ON NEEDLES OF PINUS-SYLVESTRIS
    BACIC, T
    VANDEREERDEN, LJ
    BAAS, P
    [J]. ACTA BOTANICA NEERLANDICA, 1994, 43 (03): : 271 - 273
  • [10] Nanostructure of epicuticular plant waxes: Self-assembly of wax tubules
    Koch, Kerstin
    Dommisse, Aarnoud
    Niemietz, Adrian
    Barthlott, Wilhelm
    Wandelt, Klaus
    [J]. SURFACE SCIENCE, 2009, 603 (10-12) : 1961 - 1968