Liquid-Liquid Phase Separation: Unraveling the Enigma of Biomolecular Condensates in Microbial Cells

被引:35
|
作者
Gao, Zixu [1 ]
Zhang, Wenchang [1 ]
Chang, Runlei [1 ]
Zhang, Susu [1 ]
Yang, Guiwen [1 ]
Zhao, Guoyan [1 ]
机构
[1] Shandong Normal Univ, Coll Life Sci, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
liquid-liquid phase separation; biomolecular condensates; membraneless organelles; multivalent interactions; crowded environments; cellular noise; DNA-BINDING PROTEIN; ESCHERICHIA-COLI; STRESS GRANULES; MICROFLUIDIC FORMATION; RNA-POLYMERASE; YEATS DOMAIN; HISTONE H2B; REVEALS; BODIES; BODY;
D O I
10.3389/fmicb.2021.751880
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Numerous examples of microbial phase-separated biomolecular condensates have now been identified following advances in fluorescence imaging and single molecule microscopy technologies. The structure, function, and potential applications of these microbial condensates are currently receiving a great deal of attention. By neatly compartmentalizing proteins and their interactors in membrane-less organizations while maintaining free communication between these macromolecules and the external environment, microbial cells are able to achieve enhanced metabolic efficiency. Typically, these condensates also possess the ability to rapidly adapt to internal and external changes. The biological functions of several phase-separated condensates in small bacterial cells show evolutionary convergence with the biological functions of their eukaryotic paralogs. Artificial microbial membrane-less organelles are being constructed with application prospects in biocatalysis, biosynthesis, and biomedicine. In this review, we provide an overview of currently known biomolecular condensates driven by liquid-liquid phase separation (LLPS) in microbial cells, and we elaborate on their biogenesis mechanisms and biological functions. Additionally, we highlight the major challenges and future research prospects in studying microbial LLPS.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Spontaneous liquid-liquid phase separation of water
    Yagasaki, Takuma
    Matsumoto, Masakazu
    Tanaka, Hideki
    PHYSICAL REVIEW E, 2014, 89 (02):
  • [42] Liquid-liquid phase separation in tumor biology
    Tong, Xuhui
    Tang, Rong
    Xu, Jin
    Wang, Wei
    Zhao, Yingjun
    Yu, Xianjun
    Shi, Si
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
  • [43] Liquid-liquid phase separation in innate immunity
    Liu, Dawei
    Yang, Jinhang
    Cristea, Ileana M.
    TRENDS IN IMMUNOLOGY, 2024, 45 (06) : 454 - 469
  • [44] Liquid-liquid phase separation in organic aerosol
    Freedman, Miriam
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [45] Modulating α-Synuclein Liquid-Liquid Phase Separation
    Sawner, Ajay Singh
    Ray, Soumik
    Yadav, Preeti
    Mukherjee, Semanti
    Panigrahi, Rajlaxmi
    Poudyal, Manisha
    Patel, Komal
    Ghosh, Dhiman
    Kummerant, Eric
    Kumar, Ashutosh
    Riek, Roland
    Maji, Samir K.
    BIOCHEMISTRY, 2021, 60 (48) : 3676 - 3696
  • [46] Aggregation of the amyloid-β peptide (Aβ40) within condensates generated through liquid-liquid phase separation
    Morris, Owen M.
    Toprakcioglu, Zenon
    Rontgen, Alexander
    Cali, Mariana
    Knowles, Tuomas P. J.
    Vendruscolo, Michele
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Liquid-liquid phase separation in supercooled water
    Stanley, HE
    Poole, PH
    Sciortino, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (12BIS): : 2123 - 2133
  • [48] Crystallization in the presence of a liquid-liquid phase separation
    Veesler, Stephane
    Revalor, Eve
    Bottini, Olivier
    Hoff, Christian
    ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2006, 10 (04) : 841 - 845
  • [49] Liquid-Liquid Phase Separation in Crowded Environments
    Andre, Alain A. M.
    Spruijt, Evan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 20
  • [50] Kinase regulation by liquid-liquid phase separation
    Lopez-Palacios, Tania P.
    Andersen, Joshua L.
    TRENDS IN CELL BIOLOGY, 2023, 33 (08) : 649 - 666