A Smart Deep Convolutional Neural Network for Real-Time Surface Inspection

被引:2
|
作者
Passos, Adriano G. [1 ]
Cousseau, Tiago [1 ]
Luersen, Marco A. [1 ]
机构
[1] Fed Univ Technol, Dept Mech Engn, BR-81280340 Curitiba, PR, Brazil
来源
关键词
Deep learning; surface defects classification; steel rolling; LEARNING-BASED APPROACH; DEFECTS;
D O I
10.32604/csse.2022.020020
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A proper detection and classification of defects in steel sheets in real time have become a requirement for manufacturing these products, largely used in many industrial sectors. However, computers used in the production line of small to medium size companies, in general, lack performance to attend real-time inspection with high processing demands. In this paper, a smart deep convolutional neural network for using in real-time surface inspection of steel rolling sheets is proposed. The architecture is based on the state-of-the-art SqueezeNet approach, which was originally developed for usage with autonomous vehicles. The main features of the proposed model are: small size and low computational burden. The model is 10 to 20 times smaller when compared to other networks designed for the same task, and more than 700 times smaller than general networks. Also, the number of floating-point operations for a prediction is about 50 times lower than the ones used for similar tasks. Despite its small size, the proposed model achieved near-perfect accuracy on a public dataset of 1800 images of six types of steel rolling defects.
引用
收藏
页码:583 / 593
页数:11
相关论文
共 50 条
  • [41] Real-Time Video Object Recognition Using Convolutional Neural Network
    Ahn, Byungik
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [42] Efficient Real-Time Object Detection based on Convolutional Neural Network
    Abd Shehab, Mohanad
    Al-Gizi, Ammar
    Swadi, Salah M.
    2021 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL ELECTRICITY (ICATE), 2021,
  • [43] Real-Time Fabric Defect Segmentation Based on Convolutional Neural Network
    Zhen Wang
    Jing Junfeng
    Zhang, Huanhuan
    Yan Zhao
    AATCC JOURNAL OF RESEARCH, 2021, 8 : 91 - 96
  • [44] KrNet: A Kinetic Real-Time Convolutional Neural Network for Navigational Assistance
    Lin, Shufei
    Wang, Kaiwei
    Yang, Kailun
    Cheng, Ruiqi
    COMPUTERS HELPING PEOPLE WITH SPECIAL NEEDS, ICCHP 2018, PT II, 2018, 10897 : 55 - 62
  • [45] Real-time, simultaneous myoelectric control using a convolutional neural network
    Ameri, Ali
    Akhaee, Mohammad Ali
    Scheme, Erik
    Englehart, Kevin
    PLOS ONE, 2018, 13 (09):
  • [46] A Convolutional Heterogeneous Spiking Neural Network for Real-time Music Classification
    Liu, Yuguo
    Chen, Wenyu
    Qu, Hong
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 331 - 336
  • [47] Age Estimation of Real-Time Faces Using Convolutional Neural Network
    Agbo-Ajala, Olatunbosun
    Viriri, Serestina
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, PT I, 2019, 11683 : 316 - 327
  • [48] Real-time goat face recognition using convolutional neural network
    Billah, Masum
    Wang, Xihong
    Yu, Jiantao
    Jiang, Yu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 194
  • [49] A Lightweight Convolutional Neural Network for Real-Time Facial Expression Detection
    Zhou, Ning
    Liang, Renyu
    Shi, Wenqian
    IEEE ACCESS, 2021, 9 : 5573 - 5584
  • [50] Fast Convolutional Neural Network for Real-Time Robotic Grasp Detection
    Ribeiro, Eduardo G.
    Grassi Jr, Valdir
    2019 19TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2019, : 49 - 54