On Some Subclasses of Delta-Subharmonic Functions of Bounded Type in the Disc

被引:0
|
作者
Restrepo, J. E. [1 ]
机构
[1] Univ Antioquia, Inst Math, Medellin, Colombia
关键词
Delta-subharmonic function; Green potential; charges; 31A05; 31A20; NONNEGATIVE HARMONIC MAJORANTS;
D O I
10.3103/S1068362318060055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper gives the delta-subharmonic extension of the part of the factorization theory of M. M. Djrbashian - V. S. Zakaryan, which relates with the descriptive representations of the classes N{} of functions meromorphic in the unit disc, contained in Nevanlinna's class N of functions of bounded type.
引用
收藏
页码:346 / 354
页数:9
相关论文
共 50 条
  • [31] A representation formula for reproducing subharmonic functions in the unit disc
    Olofsson, Anders
    Bergman Spaces and Related Topics in Complex Analysis, Proceedings, 2006, 404 : 165 - 173
  • [32] Subclasses of convex functions on the unit disc of the complex plane
    Aron, Mihai
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 312 - 326
  • [33] A note on the space of delta m-subharmonic functions
    Van Thien Nguyen
    Karim, Samsul Ariffin Abdul
    Dinh Dat Truong
    AIMS MATHEMATICS, 2020, 5 (03): : 2369 - 2375
  • [34] Bounded subharmonic functions possess the Lebesgue property at each point
    Sadullaev, A. S.
    Imomkulov, S. A.
    Rakhimov, K. Kh.
    MATHEMATICAL NOTES, 2014, 96 (5-6) : 992 - 995
  • [35] Approximation of m-subharmonic functions on bounded domains in Cn
    Nguyen Quang Dieu
    Dau Hoang Hung
    Hoang Thieu Anh
    Sanphet Ounheuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) : 1039 - 1055
  • [37] Bounded subharmonic functions possess the Lebesgue property at each point
    A. S. Sadullaev
    S. A. Imomkulov
    K. Kh. Rakhimov
    Mathematical Notes, 2014, 96 : 992 - 995
  • [38] Geodesics in the Space of m-Subharmonic Functions With Bounded Energy
    Ahag, Per
    Czyz, Rafal
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (12) : 10115 - 10155
  • [39] On cardinality of some subclasses of monotone functions
    Khovratovich, D. V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2005, 15 (05): : 489 - 506
  • [40] Some Properties Subclasses of Analytic Functions
    Frasin, Basem Aref
    KYUNGPOOK MATHEMATICAL JOURNAL, 2014, 54 (04): : 531 - 543