Magnetic Resonance Cancer Nanotheranostics

被引:2
|
作者
Orel, V. E. [1 ,2 ]
Tselepi, M. [3 ,8 ]
Mitrelias, T. [3 ]
Shevchenko, A. D. [4 ]
Rykhalskiy, O. Y. [1 ,2 ]
Golovko, T. S. [5 ]
Ganich, O. V. [5 ]
Romanov, A. V. [1 ]
Orel, V. B. [6 ]
Burlaka, A. P. [7 ]
Lukin, S. N. [7 ]
Barnes, C. H. W. [3 ]
机构
[1] Natl Canc Inst, Med Phys & Bioengn Res Lab, Kiev, Ukraine
[2] Igor Sikorsky Kyiv Polytech Inst, Dept Biomed Engn, Kiev, Ukraine
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge, England
[4] GV Kurdyumov Inst Met Phys, Kiev, Ukraine
[5] Natl Canc Inst, Res Dept Radiodiagnost, Kiev, Ukraine
[6] Bogomolets Natl Med Univ, Kiev, Ukraine
[7] NAS Ukraine, RE Kavetsky Inst Expt Pathol Oncol & Radiobiol, Kiev, Ukraine
[8] Univ Ioannina, Dept Phys, Ioannina, Greece
关键词
Magnetic resonance; Magnetic nanocomplex; Doxorubicin; Tumor;
D O I
10.1007/978-981-10-9023-3_120
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
It is well known that the magnetic spin effects during nanotherapy can cause tumor cell apoptosis and necrosis based on redox reactions. The current study was carried out on C57Bl/6 mice with Lewis lung carcinoma. The magnetic nanocomplex administration combined with the impact of magnetic resonance system (1.5 T) showed maximal antitumor and antimetastatic effects. The electron spin resonance spectra have been used as diagnostic markers and recorded a change in the tumor redox state based on chemical species such as NO-FeS-proteins and ubisemiquinone. The technology of magnetic resonance nanotheranostics could potentially allow to improve the antitumor effect of chemotherapeutic agents in disseminated cancer therapy.
引用
收藏
页码:651 / 654
页数:4
相关论文
共 50 条
  • [41] Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy
    Hu, Xiaoming
    Tang, Yufu
    Hu, Yuxuan
    Lu, Feng
    Lu, Xiaomei
    Wang, Yuqi
    Li, Jie
    Li, Yuanyuan
    Ji, Yu
    Wang, Wenjun
    Ye, Deju
    Fan, Quli
    Huang, Wei
    THERANOSTICS, 2019, 9 (14): : 4168 - 4181
  • [42] Use of macrophage as a Trojan horse for cancer nanotheranostics
    Qi, Yu
    Yan, Xu
    Xia, Tian
    Liu, Sijin
    MATERIALS & DESIGN, 2021, 198
  • [43] Magnetic Resonance Imaging of Rectal Cancer
    Dewhurst, Catherine E.
    Mortele, Koenraad J.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2013, 51 (01) : 121 - +
  • [44] Magnetic Resonance Imaging for Lung Cancer
    Koyama, Hisanobu
    Ohno, Yoshiharu
    Seki, Shinichiro
    Nishio, Mizuho
    Yoshikawa, Takeshi
    Matsumoto, Sumiaki
    Sugimura, Kazuro
    JOURNAL OF THORACIC IMAGING, 2013, 28 (03) : 138 - 150
  • [45] Magnetic resonance imaging and prostate cancer
    Cornud, F.
    Villers, A.
    Mongiat-Artus, P.
    Rebillard, X.
    Soulie, M.
    PROGRES EN UROLOGIE, 2008, 18 (10): : 621 - 633
  • [46] Magnetic resonance imaging of colorectal cancer
    Zagoria, RJ
    Wolfman, NT
    SEMINARS IN ROENTGENOLOGY, 1996, 31 (02) : 162 - 165
  • [47] Magnetic resonance imaging in prostate cancer
    S D Heenan
    Prostate Cancer and Prostatic Diseases, 2004, 7 : 282 - 288
  • [48] Nanoplatforms for magnetic resonance imaging of cancer
    Cywinska, Monika A.
    Grudzinski, Ireneusz P.
    Cieszanowski, Andrzej
    Bystrzejewski, Michal
    Poplawska, Magdalena
    POLISH JOURNAL OF RADIOLOGY, 2011, 76 (02) : 28 - 36
  • [49] Magnetic resonance imaging of prostate cancer
    Guneyli, Serkan
    Erdem, Cemile Zuhal
    Erdem, Lutfi Oktay
    CLINICAL IMAGING, 2016, 40 (04) : 601 - 609
  • [50] Magnetic Resonance Imaging of Prostate Cancer
    Wong, K. Y. K.
    Chan, C. Y. H.
    Kwok, K. Y.
    Wong, W. K.
    Tang, K. W.
    HONG KONG JOURNAL OF RADIOLOGY, 2016, 19 (01): : 64 - 73