IMMERSED FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS WITH NON-HOMOGENEOUS JUMP CONDITIONS

被引:1
|
作者
He, Xiaoming [1 ]
Lin, Tao [2 ]
Lin, Yanping [3 ,4 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[4] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
interface problems; immersed interface; finite element; nonhomogeneous jump conditions; MATCHED INTERFACE; EQUATIONS; SIMULATION; SCHEMES; SPACE; ORDER; FIELD;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is to develop immersed finite element (IFE) functions for solving second order elliptic boundary value problems with discontinuous coefficients and non-homogeneous jump conditions. These IFE functions can be formed on meshes independent of interface. Numerical examples demonstrate that these IFE functions have the usual approximation capability expected from polynomials employed. The related IFE methods based on the Galerkin formulation can be considered as natural extensions of those IFE methods in the literature developed for homogeneous jump conditions, and they can optimally solve the interface problems with a nonhomogeneous flux jump condition.
引用
下载
收藏
页码:284 / 301
页数:18
相关论文
共 50 条
  • [21] Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems
    Lin, Tao
    Lin, Yanping
    Sun, Weiwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (04): : 807 - 823
  • [22] Nonconforming immersed finite element spaces for elliptic interface problems
    Guo, Ruchi
    Lin, Tao
    Zhang, Xu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 2002 - 2016
  • [23] A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems
    Lin, Tao
    Sheen, Dongwoo
    Zhang, Xu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 442 - 463
  • [24] An immersed finite element method for elliptic interface problems on surfaces
    Guo, Changyin
    Xiao, Xufeng
    Feng, Xinlong
    Tan, Zhijun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 131 : 54 - 67
  • [25] A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems
    Tao Lin
    Dongwoo Sheen
    Xu Zhang
    Journal of Scientific Computing, 2019, 79 : 442 - 463
  • [26] Superconvergence of immersed finite element methods for interface problems
    Waixiang Cao
    Xu Zhang
    Zhimin Zhang
    Advances in Computational Mathematics, 2017, 43 : 795 - 821
  • [27] Superconvergence of immersed finite element methods for interface problems
    Cao, Waixiang
    Zhang, Xu
    Zhang, Zhimin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (04) : 795 - 821
  • [28] The adaptive immersed interface finite element method for elliptic and Maxwell interface problems
    Chen, Zhiming
    Xiao, Yuanming
    Zhang, Linbo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) : 5000 - 5019
  • [29] IMPROVED ERROR ESTIMATION FOR THE PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS
    Guo, Ruchi
    Lin, Tao
    Zhuang, Qiao
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (04) : 575 - 589
  • [30] HIGHER DEGREE IMMERSED FINITE ELEMENT METHODS FOR SECOND-ORDER ELLIPTIC INTERFACE PROBLEMS
    Adjerid, Slimane
    Ben-Romdhane, Mohamed
    Lin, Tao
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (03) : 541 - 566