3-dimensional Levi-Civita metrics with projective vector fields

被引:1
|
作者
Manno, Gianni [1 ]
Vollmer, Andreas [1 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi,24, I-10129 Turin, TO, Italy
关键词
Levi-Civita metrics; Projective vector fields; Projectively equivalent metrics; NORMAL FORMS;
D O I
10.1016/j.matpur.2022.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Projective vector fields are the infinitesimal transformations whose local flow preserves geodesics up to reparametrisation. In 1882, Sophus Lie posed the problem of describing 2-dimensional metrics admitting a non-trivial projective vector field, which was solved in recent years. In the present paper, we solve the analog of Lie's problem in dimension 3, for Riemannian metrics and, more generally, for Levi-Civita metrics of arbitrary signature. (c) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:473 / 517
页数:45
相关论文
共 50 条
  • [21] Levi-Civita Ricci-Flat Metrics on Non-Kähler Calabi-Yau Manifolds
    Eder M. Correa
    [J]. The Journal of Geometric Analysis, 2023, 33
  • [22] RIEMANNIAN METRICS, WHOSE VALUES, LEVI-CIVITA CONNECTION AND RIEMANNIAN FLEXURE TENSION OVER A LOW AGGREGATE ARE SET
    RECKZIEG.H
    [J]. MATHEMATISCHE ANNALEN, 1974, 207 (04) : 281 - 299
  • [23] Criteria of 3-dimensional homogeneous vector fields
    He, YC
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS AND COMPUTATIONAL SIMULATIONS, 2000, : 115 - 119
  • [24] A MODULUS OF 3-DIMENSIONAL VECTOR-FIELDS
    TOGAWA, Y
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 : 295 - 301
  • [25] Four-dimensional Kahler metrics admitting c-projective vector fields
    Bolsinov, Alexey V.
    Matveev, Vladimir S.
    Mettler, Thomas
    Rosemann, Stefan
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (03): : 619 - 657
  • [26] Deducing 3-Dimensional Polarization Fields from Projective Measurements
    Galvez, Enrique J.
    Dutta, Ishir
    [J]. COMPLEX LIGHT AND OPTICAL FORCES XI, 2017, 10120
  • [27] EVENTS IN EVOLVING 3-DIMENSIONAL VECTOR-FIELDS
    NYE, JF
    THORNDIKE, AS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (01): : 1 - 14
  • [28] DESINGULARIZATION STRATEGIES FOR 3-DIMENSIONAL VECTOR-FIELDS
    TORRES, FC
    [J]. LECTURE NOTES IN MATHEMATICS, 1987, 1259 : 1 - 189
  • [29] 3-DIMENSIONAL LIE-ALGEBRAS OF VECTOR FIELDS
    SVEC, A
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (04) : 661 - 672
  • [30] Hopf bifurcation in 3-dimensional polynomial vector fields
    Sanchez-Sanchez, Ivan
    Torregrosa, Joan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 105