Deep Learning in Radiology

被引:302
|
作者
McBee, Morgan P. [1 ]
Awan, Omer A. [2 ]
Colucci, Andrew T. [3 ]
Ghobadi, Comeron W. [4 ]
Kadom, Nadja [5 ]
Kansagra, Akash P. [6 ,7 ,8 ]
Tridandapani, Srini [9 ]
Auffermann, William F. [10 ]
机构
[1] Cincinnati Childrens Hosp, Dept Radiol & Med Imaging, Cincinnati, OH USA
[2] Temple Univ, Dept Radiol, Philadelphia, PA 19122 USA
[3] Beth Israel Deaconess Med Ctr, Dept Radiol, 330 Brookline Ave, Boston, MA 02215 USA
[4] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[5] Emory Univ, Sch Med, Dept Radiol & Imaging Sci, Childrens Healthcare Atlanta Egleston, Atlanta, GA USA
[6] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO USA
[7] Washington Univ, Sch Med, Dept Neurol Surg, St Louis, MO USA
[8] Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
[9] Emory Univ, Georgia Inst Technol, Sch Med Elect & Comp Engn, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[10] Emory Univ, Sch Med, Dept Radiol & Imaging Sci, 1365 Clifton Rd NE, Atlanta, GA 30322 USA
关键词
Machine learning; deep learning; machine intelligence; artificial intelligence; SPEECH RECOGNITION; CLASSIFICATION; ALGORITHM; CANCER; IMAGES; CT;
D O I
10.1016/j.acra.2018.02.018
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
As radiology is inherently a data-driven specialty, it is especially conducive to utilizing data processing techniques. One such technique, deep learning (DL), has become a remarkably powerful tool for image processing in recent years. In this work, the Association of University Radiologists Radiology Research Alliance Task Force on Deep Learning provides an overview of DL for the radiologist. This article aims to present an overview of DL in a manner that is understandable to radiologists; to examine past, present, and future applications; as well as to evaluate how radiologists may benefit from this remarkable new tool. We describe several areas within radiology in which DL techniques are having the most significant impact: lesion or disease detection, classification, quantification, and segmentation. The legal and ethical hurdles to implementation are also discussed. By taking advantage of this powerful tool, radiologists can become increasingly more accurate in their interpretations with fewer errors and spend more time to focus on patient care.
引用
收藏
页码:1472 / 1480
页数:9
相关论文
共 50 条
  • [41] Attention-Based Explanation in a Deep Learning Model For Classifying Radiology Reports
    Putelli, Luca
    Gerevini, Alfonso E.
    Lavelli, Alberto
    Maroldi, Roberto
    Serina, Ivan
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2021), 2021, : 367 - 372
  • [42] Deep learning in radiology: ethics of data and on the value of algorithm transparency, interpretability and explainability
    Alvaro Fernandez-Quilez
    AI and Ethics, 2023, 3 (1): : 257 - 265
  • [43] Deep Learning of Radiology Reports for Pulmonary Embolus: Is a Computer Reading My Report?
    Krupinski, Elizabeth A.
    RADIOLOGY, 2018, 286 (03) : 865 - 867
  • [44] A Conference-Friendly, Hands-on Introduction to Deep Learning for Radiology Trainees
    Walter F. Wiggins
    M. Travis Caton
    Kirti Magudia
    Michael H. Rosenthal
    Katherine P. Andriole
    Journal of Digital Imaging, 2021, 34 : 1026 - 1033
  • [45] Automatic Detection of Thyroid and Adrenal Incidentals Using Radiology Reports and Deep Learning
    Canton, Stephen P.
    Dadashzadeh, Esmaeel
    Yip, Linwah
    Forsythe, Raquel
    Handzel, Robert
    JOURNAL OF SURGICAL RESEARCH, 2021, 266 : 192 - 200
  • [46] A Conference-Friendly, Hands-on Introduction to Deep Learning for Radiology Trainees
    Wiggins, Walter F.
    Caton, M. Travis, Jr.
    Magudia, Kirti
    Rosenthal, Michael H.
    Andriole, Katherine P.
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) : 1026 - 1033
  • [47] Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios
    Candemir, Sema
    Nguyen, Xuan, V
    Folio, Les R.
    Prevedello, Luciano M.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (06)
  • [48] Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI
    Mazurowski, Maciej A.
    Buda, Mateusz
    Saha, Ashirbani
    Bashir, Mustafa R.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (04) : 939 - 954
  • [49] Brain MRI Deep Learning and Bayesian Inference System Augments Radiology Resident Performance
    Jeffrey D. Rudie
    Jeffrey Duda
    Michael Tran Duong
    Po-Hao Chen
    Long Xie
    Robert Kurtz
    Jeffrey B. Ware
    Joshua Choi
    Raghav R. Mattay
    Emmanuel J. Botzolakis
    James C. Gee
    R. Nick Bryan
    Tessa S. Cook
    Suyash Mohan
    Ilya M. Nasrallah
    Andreas M. Rauschecker
    Journal of Digital Imaging, 2021, 34 : 1049 - 1058
  • [50] Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique
    Moezzi, Seyed Ali Reza
    Ghaedi, Abdolrahman
    Rahmanian, Mojdeh
    Mousavi, Seyedeh Zahra
    Sami, Ashkan
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (01) : 80 - 90