Deep Learning in Radiology

被引:302
|
作者
McBee, Morgan P. [1 ]
Awan, Omer A. [2 ]
Colucci, Andrew T. [3 ]
Ghobadi, Comeron W. [4 ]
Kadom, Nadja [5 ]
Kansagra, Akash P. [6 ,7 ,8 ]
Tridandapani, Srini [9 ]
Auffermann, William F. [10 ]
机构
[1] Cincinnati Childrens Hosp, Dept Radiol & Med Imaging, Cincinnati, OH USA
[2] Temple Univ, Dept Radiol, Philadelphia, PA 19122 USA
[3] Beth Israel Deaconess Med Ctr, Dept Radiol, 330 Brookline Ave, Boston, MA 02215 USA
[4] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[5] Emory Univ, Sch Med, Dept Radiol & Imaging Sci, Childrens Healthcare Atlanta Egleston, Atlanta, GA USA
[6] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO USA
[7] Washington Univ, Sch Med, Dept Neurol Surg, St Louis, MO USA
[8] Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
[9] Emory Univ, Georgia Inst Technol, Sch Med Elect & Comp Engn, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[10] Emory Univ, Sch Med, Dept Radiol & Imaging Sci, 1365 Clifton Rd NE, Atlanta, GA 30322 USA
关键词
Machine learning; deep learning; machine intelligence; artificial intelligence; SPEECH RECOGNITION; CLASSIFICATION; ALGORITHM; CANCER; IMAGES; CT;
D O I
10.1016/j.acra.2018.02.018
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
As radiology is inherently a data-driven specialty, it is especially conducive to utilizing data processing techniques. One such technique, deep learning (DL), has become a remarkably powerful tool for image processing in recent years. In this work, the Association of University Radiologists Radiology Research Alliance Task Force on Deep Learning provides an overview of DL for the radiologist. This article aims to present an overview of DL in a manner that is understandable to radiologists; to examine past, present, and future applications; as well as to evaluate how radiologists may benefit from this remarkable new tool. We describe several areas within radiology in which DL techniques are having the most significant impact: lesion or disease detection, classification, quantification, and segmentation. The legal and ethical hurdles to implementation are also discussed. By taking advantage of this powerful tool, radiologists can become increasingly more accurate in their interpretations with fewer errors and spend more time to focus on patient care.
引用
收藏
页码:1472 / 1480
页数:9
相关论文
共 50 条
  • [1] Deep learning workflow in radiology: a primer
    Montagnon, Emmanuel
    Cerny, Milena
    Cadrin-Chenevert, Alexandre
    Hamilton, Vincent
    Derennes, Thomas
    Ilinca, Andre
    Vandenbroucke-Menu, Franck
    Turcotte, Simon
    Kadoury, Samuel
    Tang, An
    INSIGHTS INTO IMAGING, 2020, 11 (01)
  • [2] Deep learning workflow in radiology: a primer
    Emmanuel Montagnon
    Milena Cerny
    Alexandre Cadrin-Chênevert
    Vincent Hamilton
    Thomas Derennes
    André Ilinca
    Franck Vandenbroucke-Menu
    Simon Turcotte
    Samuel Kadoury
    An Tang
    Insights into Imaging, 11
  • [3] The present and future of deep learning in radiology
    Saba, Luca
    Biswas, Mainak
    Kuppili, Venkatanareshbabu
    Godia, Elisa Cuadrado
    Suri, Harman S.
    Edla, Damodar Reddy
    Omerzu, Tomaz
    Laird, John R.
    Khanna, Narendra N.
    Mavrogeni, Sophie
    Protogerou, Athanasios
    Sfikakis, Petros P.
    Viswanathan, Vijay
    Kitas, George D.
    Nicolaides, Andrew
    Gupta, Ajay
    Suri, Jasjit S.
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 114 : 14 - 24
  • [4] Deep Learning for Chest Radiology: A Review
    Yeli Feng
    Hui Seong Teh
    Yiyu Cai
    Current Radiology Reports, 7
  • [5] Weakly Supervised Deep Learning in Radiology
    Misera, Leo
    Mueller-Franzes, Gustav
    Truhn, Daniel
    Kather, Jakob Nikolas
    RADIOLOGY, 2024, 312 (01)
  • [6] Deep Learning for Chest Radiology: A Review
    Feng, Yeli
    Teh, Hui Seong
    Cai, Yiyu
    CURRENT RADIOLOGY REPORTS, 2019, 7 (08)
  • [7] Deep learning with convolutional neural network in radiology
    Koichiro Yasaka
    Hiroyuki Akai
    Akira Kunimatsu
    Shigeru Kiryu
    Osamu Abe
    Japanese Journal of Radiology, 2018, 36 : 257 - 272
  • [8] Deep learning with convolutional neural network in radiology
    Yasaka, Koichiro
    Akai, Hiroyuki
    Kunimatsu, Akira
    Kiryu, Shigeru
    Abe, Osamu
    JAPANESE JOURNAL OF RADIOLOGY, 2018, 36 (04) : 257 - 272
  • [9] Technical and clinical overview of deep learning in radiology
    Daiju Ueda
    Akitoshi Shimazaki
    Yukio Miki
    Japanese Journal of Radiology, 2019, 37 : 15 - 33
  • [10] Deep learning in generating radiology reports: A survey
    Monshi, Maram Mahmoud A.
    Poon, Josiah
    Chung, Vera
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 106