Analyzing the Distribution of Microencapsulated Organic Phase Change Materials Embedded in a Metallic Matrix

被引:0
|
作者
McCann, Melissa K. [1 ]
Fish, Michael C. [2 ]
Boteler, Lauren M. [2 ]
Agonafer, Damena D. [1 ]
机构
[1] Washington Univ, 1 Brookings Dr, St Louis, MO 63130 USA
[2] US Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
来源
PROCEEDINGS OF THE NINETEENTH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2020) | 2020年
关键词
phase change material composite; microencapsulated organic PCM; paraffin wax; Field's metal; manual mixing; transient thermal solution; phase change onset temperature; heating peak temperature; latent heat; THERMAL-ENERGY STORAGE;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work aims to mitigate the overdesign of steady state packaging systems by combining an organic phase change material (o-PCM) and a metallic PCM (m-PCM) to create a passive cooling composite for pulse power applications. The organic constituent, melamine microencapsulated paraffin spheres, is manually mixed into a Field's metal (32.5Bi/51In/16.5Sn wt%) matrix. Four concentrations are synthesized containing organic volumetric fractions (VF) of 21.8%, 40.3%, 50.1%, and 61.2%, with a liquid-solid melting temperature near 60 degrees C. Several tools aid in determining the physical arrangement and thermal properties of the prepared PCM composites. A scanning electron microscope (SEM) shows preliminary o-PCM orientations on the composite surface at various magnifications. For interior o-PCM sphere distribution analysis, still images are taken from time-lapse videos created from a micro-computed tomographic (micro-CT) system. Binarization and pixel counting techniques are able to determine effective internal VFs within 3-5% of the prepared bulk VF. Differential scanning calorimetry is employed to determine the phase change onset temperature, heating peak temperature, and latent heat of the PCM composites. This novel PCM fabrication approach decreases the device package size, limits the associated weight, increases the system performance, and minimizes the composite cost.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 50 条
  • [41] Thermal properties of geopolymer composites containing microencapsulated phase change materials
    Pławecka K.
    Bąk A.
    Bazan P.
    Łach M.
    Applied Research, 2023, 2 (03):
  • [42] Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materials
    Rodriguez, C. Romero
    de Mendonca Filho, F. Franca
    Figueiredo, S. Chaves
    Schlangen, E.
    Savija, B.
    CEMENT & CONCRETE COMPOSITES, 2020, 113
  • [43] POLY 212-Preparation and characterization of microencapsulated phase change materials
    Zou, Liming
    Xu, Su
    Yang, Jinbo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [44] Preparation of melamine resin/butyl stearate microencapsulated phase change materials
    Ma, Feng
    Li, Yong-Chao
    Chen, Ming-Hui
    Zong, Xue-Gang
    Cailiao Gongcheng/Journal of Materials Engineering, 2010, (07): : 42 - 45
  • [45] Preparation and crystallization behavior of sensitive thermochromic microencapsulated phase change materials
    Zhang, Wenhui
    Zhang, Hang
    Liu, Shuhui
    Zhang, Xingxiang
    Li, Wei
    APPLIED ENERGY, 2024, 362
  • [46] Development of ductile cementitious composites incorporating microencapsulated phase change materials
    Branko Šavija
    Mladena Luković
    Geerte M. G. Kotteman
    Stefan Chaves Figuieredo
    Fernando França de Mendoça Filho
    Erik Schlangen
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2017, 9 (3) : 169 - 180
  • [47] Analysis of thermoregulation indices on microencapsulated phase change materials for asphalt pavement
    Ma, Biao
    Chen, Sha-sha
    Wei, Kun
    Liu, Feng-wei
    Zhou, Xue-yan
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 208 : 402 - 412
  • [48] Reversible thermochromic microencapsulated phase change materials for enhancing functionality of silicone rubber materials
    Zhang, Zetian
    Liu, Yang
    Yang, Kaifeng
    Chen, Deyan
    Li, Shan
    Li, Zhengjun
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 290
  • [49] Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage
    Su, Weiguang
    Darkwa, Jo
    Kokogiannakis, Georgis
    Zhou, Tongyu
    Li, Yiling
    IMPROVING RESIDENTIAL ENERGY EFFICIENCY INTERNATIONAL CONFERENCE, IREE 2017, 2017, 121 : 95 - 101
  • [50] Elastic limit and charging times of compressible microencapsulated phase change materials
    Otero, Jose A.
    Hernandez-Cooper, Ernesto M.
    APPLIED THERMAL ENGINEERING, 2024, 237