Sasakian geometry on sphere bundles

被引:3
|
作者
Boyer, Charles P. [1 ]
Tonnesen-Friedman, Christina W. [2 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Union Coll, Dept Math, Schenectady, NY 12308 USA
关键词
Yamazaki fiber join; Extremal Sasaki metrics; CSC Sasaki metrics; Sasaki-Einstein metrics; EINSTEIN METRICS; SYMPLECTIC-MANIFOLDS; HAMILTONIAN; 2-FORMS; EXTREMAL METRICS; KAHLER GEOMETRY; CLASSIFICATION; EXISTENCE; CONSTRUCTION; COMPACT;
D O I
10.1016/j.difgeo.2021.101765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study the Sasakian geometry on odd dimensional sphere bundles over a smooth projective algebraic variety N with the ultimate, but probably unachievable goal of understanding the existence and non-existence of extremal and constant scalar curvature Sasaki metrics. We apply the fiber join construction of Yamazaki [48] for K-contact manifolds to the Sasaki case. This construction depends on the choice of d + 1 integral Kahler classes [omega(j)] on N that are not necessarily colinear in the Kahler cone. We show that the colinear case is equivalent to a subclass of a different join construction originally described in [7,11], applied to the spherical case by the authors in [19,20] when d = 1, and known as cone decomposable [13]. The non-colinear case gives rise to infinite families of new inequivalent cone indecomposable Sasaki contact CR structures on certain sphere bundles. We prove that the Sasaki cone for some of these structures contains an open set of extremal Sasaki metrics and, for certain specialized cases, the regular ray within this cone is shown to have constant scalar curvature. We also compute the cohomology groups of all such sphere bundles over a product of Riemann surfaces. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] REDUCIBILITY IN SASAKIAN GEOMETRY
    Boyer, Charles P.
    Huang, Hongnian
    Legendre, Eveline
    Tonnesen-Friedman, Christina W.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) : 6825 - 6869
  • [22] Constructions in sasakian geometry
    Boyer, Charles P.
    Galicki, Krzysztof
    Ornea, Liviu
    MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (04) : 907 - 924
  • [23] On positive Sasakian geometry
    Boyer, CP
    Galicki, K
    Nakamaye, A
    GEOMETRIAE DEDICATA, 2003, 101 (01) : 93 - 102
  • [24] Geodesics of Sasakian Metrics on Tensor Bundles
    Arif A. Salimov
    Aydin Gezer
    Kursat Akbulut
    Mediterranean Journal of Mathematics, 2009, 6 : 135 - 147
  • [25] Geodesics of Sasakian Metrics on Tensor Bundles
    Salimov, Arif A.
    Gezer, Aydin
    Akbulut, Kursat
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2009, 6 (02) : 135 - 147
  • [26] Holomorphic vector bundles on Sasakian threefolds and parabolic vector bundles
    Biswas, Indranil
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [27] Some Invariants in Sasakian Geometry
    Zhang, Xi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (15) : 3335 - 3367
  • [28] The Sasakian Geometry of the Heisenberg Group
    Boyer, Charles P.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2009, 52 (03): : 251 - 262
  • [29] On Sasakian-Einstein geometry
    Boyer, CP
    Galicki, K
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (07) : 873 - 909
  • [30] THE GEOMETRY OF NEARLY SASAKIAN MANIFOLDS
    KIRICHENKO, VF
    DOKLADY AKADEMII NAUK SSSR, 1983, 269 (01): : 24 - 29