The Hilbert Boundary Value Problem for 2-monogenic functions in the unit ball

被引:0
|
作者
Si Zhongwei [1 ]
机构
[1] Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614004, Peoples R China
关键词
Hilbert Boundary Value Problem; 2-monogenic function; the unit ball;
D O I
10.1109/CIS.2013.175
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
R-0,R-n be the real Clifford algebra generated by vectors e(i) for i = 1, 2, ..., n, where e(i)(2) = -1 and e(i)e(j) + e(j)e(i) = 0 if i not equal j, i, j = 1, 2, ..., n. e(0) is the unit element. In this article, the Hilbert Boundary Value Problem for 2-monogenic functions in the unit ball is investigated.
引用
收藏
页码:803 / 806
页数:4
相关论文
共 50 条
  • [1] The Hilbert boundary value problem in the unit ball in Clifford analysis
    Si Zhongwei
    Liang Lina
    Du Jinyuan
    PROCEEDINGS OF THE 2012 EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2012), 2012, : 128 - 131
  • [2] A Boundary Value Problem for Hermitian Monogenic Functions
    RicardoAbreu Blaya
    JuanBory Reyes
    DixanPeña Peña
    Frank Sommen
    Boundary Value Problems, 2008 (1)
  • [3] Monogenic functions in the biharmonic boundary value problem
    Gryshchuk, Serhii V.
    Plaksa, Sergiy A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (11) : 2939 - 2952
  • [4] A boundary value problem for Hermitian monogenic functions
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    Pena Pena, Dixan
    Sommen, Frank
    BOUNDARY VALUE PROBLEMS, 2008,
  • [5] Dirichlet boundary value problem for monogenic functions in Clifford analysis
    Doan Cong Dinh
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (09) : 1201 - 1213
  • [6] The RH boundary value problem of the k-monogenic functions
    Bu Yude
    Du Jinyuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) : 633 - 644
  • [7] Monogenic functions of bounded mean oscillation in the unit ball
    Bernstein, S
    ADVANCES IN ANALYSIS AND GEOMETRY: NEW DEVELOPMENTS USING CLIFFORD ALGEBRAS, 2004, : 31 - 50
  • [8] A boundary value problem for monogenic functions in parameter-depending Clifford algebras
    Tutschke, Wolfgang
    Judith Vanegas, Carmen
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (1-4) : 113 - 118
  • [9] A Dirichlet Boundary Value Problem for Fractional Monogenic Functions in the Riemann–Liouville Sense
    David Armendáriz
    Johan Ceballos
    Antonio Di Teodoro
    Complex Analysis and Operator Theory, 2020, 14
  • [10] THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS
    Si, Zhongwei
    Du, Jinyuan
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (02) : 393 - 403