Output-Lifted Learning Model Predictive Control

被引:0
|
作者
Nair, Siddharth H. [1 ]
Rosolia, Ugo [2 ]
Borrelli, Francesco [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[2] CALTECH, Dept Mech & Civil Engn, Pasadena, CA 91125 USA
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 06期
关键词
Learning and Predictive Control; Stability and Recursive Feasibility;
D O I
10.1016/j.ifacol.2021.08.571
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a computationally efficient Learning Model Predictive Control (LMPC) scheme for constrained optimal control of a class of nonlinear systems where the state and input can be reconstructed using lifted outputs. For the considered class of systems, we show how to use historical trajectory data collected during iterative tasks to construct a convex value function approximation along with a convex safe set in a lifted space of virtual outputs. These constructions are iteratively updated with historical data and used to synthesize predictive control policies. We show that the proposed strategy guarantees recursive constraint satisfaction, asymptotic stability, and non-decreasing closed-loop performance at each policy update. Finally, simulation results demonstrate the effectiveness of the proposed strategy on the kinematic unicycle. Copyright (C) 2021 The Authors.
引用
收藏
页码:365 / 370
页数:6
相关论文
共 50 条
  • [21] Learning Model Predictive Control for Quadrotors
    Li, Guanrui
    Tunchez, Alex
    Loianno, Giuseppe
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 5872 - 5878
  • [22] Learning to Optimize in Model Predictive Control
    Sacks, Jacob
    Boots, Byron
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 10549 - 10556
  • [23] MODEL PREDICTIVE CONTROL AND MODEL PREDICTIVE Q-LEARNING FOR STRUCTURAL VIBRATION CONTROL
    Phan, Minh Q.
    Azad, Seyed Mandi B.
    [J]. ASTRODYNAMICS 2017, PTS I-IV, 2018, 162 : 17 - 36
  • [24] Output feedback model predictive control for Hammerstein model with bounded disturbance
    Ding, Baocang
    Wang, Jun
    Su, Benji
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2022, 16 (10): : 1032 - 1041
  • [25] State and output feedback nonlinear model predictive control:: An overview
    Findeisen, R
    Imsland, L
    Allgöwer, F
    Foss, BA
    [J]. EUROPEAN JOURNAL OF CONTROL, 2003, 9 (2-3) : 190 - 206
  • [26] Output feedback model predictive control for an electromechanical valve actuator
    Mukai, Masakazu
    Seikoba, Suguru
    Kawabe, Taketoshi
    [J]. PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 1729 - 1733
  • [27] Model predictive control of an autonomous blimp with input and output constraints
    Fukushima, Hiroaki
    Saito, Ryosuke
    Matsuno, Fumitoshi
    Hada, Yasushi
    Kawabata, Kuniaki
    Asama, Hajime
    [J]. PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-4, 2006, : 1363 - 1368
  • [28] A framework for design of scheduled output feedback model predictive control
    Wan, Zhaoyang
    Kothare, Mayuresh V.
    [J]. JOURNAL OF PROCESS CONTROL, 2008, 18 (3-4) : 391 - 398
  • [29] ROBUST OUTPUT FEEDBACK MODEL PREDICTIVE CONTROL: A STOCHASTIC APPROACH
    Mohammadkhani, Mohammadali
    Bayat, Farhad
    Jalali, Ali Akbar
    [J]. ASIAN JOURNAL OF CONTROL, 2017, 19 (06) : 2085 - 2096
  • [30] A stabilizing output based nonlinear model predictive control scheme
    Roset, B. J. P.
    Lazar, A.
    Heemels, W. P. M. H.
    Nijmeijer, H.
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 4627 - +