On two-weight estimates for the maximal operator in local Morrey spaces

被引:10
|
作者
Samko, Natasha [1 ]
机构
[1] Lulea Univ Technol, SE-97187 Lulea, Sweden
关键词
Generalized weighted Morrey space; maximal function; Sawyer condition; Muckenhoupt class; WEIGHTED HARDY;
D O I
10.1142/S0129167X14500992
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two weighted local Morrey spaces L-{x0}(p,phi)(Omega, u) and L-{x0}(p,phi)(Omega, v) we obtain general type sufficient conditions and necessary conditions imposed on the functions phi and psi and the weights u and v for the boundedness of the maximal operator from L-{x0}(p,phi)(Omega, u) to L-{x0}(p,phi)(Omega, v), with some "logarithmic gap" between the sufficient and necessary conditions. Both the conditions formally coincide if we omit a certain logarithmic factor in these conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A sharp two-weight estimate for the maximal operator under a bump condition
    Osekowski, Adam
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (03): : 653 - 665
  • [22] Two-weight inequalities for the maximal operator in a Lebesgue space with variable exponent
    Mamedov F.I.
    Zeren Y.
    Journal of Mathematical Sciences, 2011, 173 (6) : 701 - 716
  • [23] A sharp two-weight estimate for the maximal operator under a bump condition
    Adam Osękowski
    Monatshefte für Mathematik, 2024, 203 : 653 - 665
  • [24] A Note on the Maximal Operator on Weighted Morrey Spaces
    A. K. Lerner
    Analysis Mathematica, 2023, 49 : 1073 - 1086
  • [25] A Note on the Maximal Operator on Weighted Morrey Spaces
    Lerner, A. K.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 1073 - 1086
  • [26] Fractional maximal operator in the local Morrey-Lorentz spaces and some applications
    Guliyev, V. S.
    Aykol, C.
    Kucukaslan, A.
    Serbetci, A.
    AFRIKA MATEMATIKA, 2024, 35 (01)
  • [27] Two-weight estimates for singular integrals defined on spaces of homogeneous type
    Edmunds, DE
    Kokilashvili, V
    Meskhi, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (03): : 468 - 502
  • [28] Potential Operators in Variable Exponent Lebesgue Spaces: Two-Weight Estimates
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Sarwar, Muhammad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [29] Potential Operators in Variable Exponent Lebesgue Spaces: Two-Weight Estimates
    Vakhtang Kokilashvili
    Alexander Meskhi
    Muhammad Sarwar
    Journal of Inequalities and Applications, 2010
  • [30] TWO-WEIGHT ESTIMATES FOR STRONG FRACTIONAL MAXIMAL FUNCTIONS AND POTENTIALS WITH MULTIPLE KERNELS
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (03) : 523 - 550