Predicting Delirium Risk Using an Automated Mayo Delirium Prediction Tool: Development and Validation of a Risk-Stratification Model

被引:14
|
作者
Pagali, Sandeep R. [1 ,2 ]
Miller, Donna [1 ,2 ]
Fischer, Karen [3 ]
Schroeder, Darrell [3 ]
Egger, Norman [1 ,2 ]
Manning, Dennis M. [1 ,2 ]
Lapid, Maria, I [2 ,4 ]
Pignolo, Robert J. [1 ,2 ]
Burton, M. Caroline [1 ]
机构
[1] Mayo Clin, Div Hosp Internal Med, Rochester, MN 55905 USA
[2] Mayo Clin, Div Geriatr Med & Gerontol, Rochester, MN 55905 USA
[3] Mayo Clin, Div Biomed Stat & Informat, Rochester, MN 55905 USA
[4] Mayo Clin, Dept Psychiat & Psychol, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
PREVENT DELIRIUM; OLDER; INTERVENTION;
D O I
10.1016/j.mayocp.2020.08.049
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: To develop a delirium risk-prediction tool that is applicable across different clinical patient populations and can predict the risk of delirium at admission to hospital. Methods: This retrospective study included 120,764 patients admitted to Mayo Clinic between January 1, 2012, and December 31, 2017, with age 50 and greater. The study group was randomized into a derivation cohort (n=80,000) and a validation cohort (n=40,764). Different risk factors were extracted and analyzed using least absolute shrinkage and selection operator (LASSO) penalized logistic regression. Results: The area under the receiver operating characteristic curve (AUROC) for Mayo Delirium Prediction (MDP) tool using derivation cohort was 0.85 (95% confidence interval [CI], .846 to .855). Using the regression coefficients obtained from the derivation cohort, predicted probability of delirium was calculated for each patient in the validation cohort. For the validation cohort, AUROC was 0.84 (95% CI, .834 to .847). Patients were classified into 1 of the 3 risk groups, based on their predicted probability of delirium: low (<5%), moderate (6% to 29%), and high (>_30%). In the derivation cohort, observed incidence of delirium was 1.7%, 12.8%, and 44.8% (low, moderate, and high risk, respectively), which is similar to the incidence rates in the validation cohort of 1.9%, 12.7%, and 46.3%. Conclusion: The Mayo Delirium Prediction tool was developed from a large heterogeneous patient population with good validation results and appears to be a reliable automated tool for delirium risk prediction with hospitalization. Further prospective validation studies are required. ? 2020 Mayo Foundation for Medical Education and Research ? MAYO CLINIC PROCEEDINGS. 2021;96(5):1229-1235
引用
收藏
页码:1229 / 1235
页数:7
相关论文
共 50 条
  • [31] Predicting delirium after aortic valve replacement: additive value of frailty to an existing delirium risk model
    Rao, A.
    Shi, S. M.
    Marcantonio, E.
    Kim, D.
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2019, 67 : S322 - S322
  • [32] Letter to the Editor: Development of a preoperative risk prediction model for delirium after cardiac surgery
    Xue, Fu-Shan
    Hu, Bin
    Tian, Tian
    [J]. JOURNAL OF CLINICAL ANESTHESIA, 2021, 73
  • [33] Development and Validation of Simplified Delirium Prediction Model in Intensive Care Unit
    Kim, Min-Kyeong
    Oh, Jooyoung
    Kim, Jae-Jin
    Park, Jin Young
    [J]. FRONTIERS IN PSYCHIATRY, 2022, 13
  • [34] Multinational development and validation of an early prediction model for delirium in ICU patients
    Wassenaar, A.
    van den Boogaard, M.
    van Achterberg, T.
    Slooter, A. J. C.
    Kuiper, M. A.
    Hoogendoorn, M. E.
    Simons, K. S.
    Maseda, E.
    Pinto, N.
    Jones, C.
    Luetz, A.
    Schandl, A.
    Verbrugghe, W.
    Aitken, L. M.
    van Haren, F. M. P.
    Donders, A. R. T.
    Schoonhoven, L.
    Pickkers, P.
    [J]. INTENSIVE CARE MEDICINE, 2015, 41 (06) : 1048 - 1056
  • [35] Multinational development and validation of an early prediction model for delirium in ICU patients
    A. Wassenaar
    M. van den Boogaard
    T. van Achterberg
    A. J. C. Slooter
    M. A. Kuiper
    M. E. Hoogendoorn
    K. S. Simons
    E. Maseda
    N. Pinto
    C. Jones
    A. Luetz
    A. Schandl
    W. Verbrugghe
    L. M. Aitken
    F. M. P. van Haren
    A. R. T. Donders
    L. Schoonhoven
    P. Pickkers
    [J]. Intensive Care Medicine, 2015, 41 : 1048 - 1056
  • [36] Development and validation of a delirium risk assessment tool in older patients admitted to the Emergency Department Observation Unit
    A. Zucchelli
    R. Apuzzo
    C. Paolillo
    V. Prestipino
    S. De Bianchi
    G. Romanelli
    A. Padovani
    A. Marengoni
    G. Bellelli
    [J]. Aging Clinical and Experimental Research, 2021, 33 : 2753 - 2758
  • [37] Generation of An Automated Tool for the Identification of Genetics Markers and Signatures in Multiple Myeloma Risk-Stratification
    Braggio, Esteban
    Keats, Jonathan J.
    Kumar, Shaji
    Ahmann, Gregory
    Mantei, Jeremy
    Stewart, Keith
    Bergsagel, P. Leif
    Fonseca, Rafael
    [J]. BLOOD, 2011, 118 (21) : 1243 - 1243
  • [38] PREDICTING SEVERITY OF DELIRIUM ON ICU ADMISSION: DEVELOPMENT OF AN AUTOMATED MACHINE LEARNING MODEL
    Raghu, Roshini
    Mohiuddin, Adnan Md
    Huang, Yu-Li
    Herasevich, Vitaly
    Lindroth, Heidi
    [J]. CRITICAL CARE MEDICINE, 2024, 52
  • [39] Development and validation of a delirium risk assessment tool in older patients admitted to the Emergency Department Observation Unit
    Zucchelli, A.
    Apuzzo, R.
    Paolillo, C.
    Prestipino, V.
    De Bianchi, S.
    Romanelli, G.
    Padovani, A.
    Marengoni, A.
    Bellelli, G.
    [J]. AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2021, 33 (10) : 2753 - 2758
  • [40] A PREDICTIVE RISK STRATIFICATION MODEL FOR DELIRIUM AFTER MAJOR UROLOGIC CANCER SURGERIES
    Ha, Albert
    Krasnow, Ross
    Hsieh, Tammy
    Kibel, Adam
    Rudolph, James
    Chung, Benjamin
    Chang, Steven
    [J]. JOURNAL OF UROLOGY, 2017, 197 (04): : E1157 - E1157