Predicting Delirium Risk Using an Automated Mayo Delirium Prediction Tool: Development and Validation of a Risk-Stratification Model

被引:14
|
作者
Pagali, Sandeep R. [1 ,2 ]
Miller, Donna [1 ,2 ]
Fischer, Karen [3 ]
Schroeder, Darrell [3 ]
Egger, Norman [1 ,2 ]
Manning, Dennis M. [1 ,2 ]
Lapid, Maria, I [2 ,4 ]
Pignolo, Robert J. [1 ,2 ]
Burton, M. Caroline [1 ]
机构
[1] Mayo Clin, Div Hosp Internal Med, Rochester, MN 55905 USA
[2] Mayo Clin, Div Geriatr Med & Gerontol, Rochester, MN 55905 USA
[3] Mayo Clin, Div Biomed Stat & Informat, Rochester, MN 55905 USA
[4] Mayo Clin, Dept Psychiat & Psychol, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
PREVENT DELIRIUM; OLDER; INTERVENTION;
D O I
10.1016/j.mayocp.2020.08.049
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: To develop a delirium risk-prediction tool that is applicable across different clinical patient populations and can predict the risk of delirium at admission to hospital. Methods: This retrospective study included 120,764 patients admitted to Mayo Clinic between January 1, 2012, and December 31, 2017, with age 50 and greater. The study group was randomized into a derivation cohort (n=80,000) and a validation cohort (n=40,764). Different risk factors were extracted and analyzed using least absolute shrinkage and selection operator (LASSO) penalized logistic regression. Results: The area under the receiver operating characteristic curve (AUROC) for Mayo Delirium Prediction (MDP) tool using derivation cohort was 0.85 (95% confidence interval [CI], .846 to .855). Using the regression coefficients obtained from the derivation cohort, predicted probability of delirium was calculated for each patient in the validation cohort. For the validation cohort, AUROC was 0.84 (95% CI, .834 to .847). Patients were classified into 1 of the 3 risk groups, based on their predicted probability of delirium: low (<5%), moderate (6% to 29%), and high (>_30%). In the derivation cohort, observed incidence of delirium was 1.7%, 12.8%, and 44.8% (low, moderate, and high risk, respectively), which is similar to the incidence rates in the validation cohort of 1.9%, 12.7%, and 46.3%. Conclusion: The Mayo Delirium Prediction tool was developed from a large heterogeneous patient population with good validation results and appears to be a reliable automated tool for delirium risk prediction with hospitalization. Further prospective validation studies are required. ? 2020 Mayo Foundation for Medical Education and Research ? MAYO CLINIC PROCEEDINGS. 2021;96(5):1229-1235
引用
收藏
页码:1229 / 1235
页数:7
相关论文
共 50 条
  • [1] Predicting delirium in elderly patients: Development and validation of a risk-stratification model
    OKeeffe, ST
    Lavan, JN
    [J]. AGE AND AGEING, 1996, 25 (04) : 317 - 321
  • [2] Validation of Mayo Delirium prediction tool - "DERAIL" risk
    Pagali, S.
    Fischer, K.
    Lapid, M.
    Pignolo, R.
    Burton, M.
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2021, 69 : S51 - S51
  • [3] Predicting delirium: a review of risk-stratification models
    Newman, Mark W.
    O'Dwyer, Linda C.
    Rosenthal, Lisa
    [J]. GENERAL HOSPITAL PSYCHIATRY, 2015, 37 (05) : 408 - 413
  • [4] Predicting inpatient delirium: The AWOL delirium risk-stratification score in clinical practice
    Brown, Ethan G.
    Josephson, S. Andrew
    Anderson, Noriko
    Reid, Mary
    Lee, Melissa
    Douglas, Vanja C.
    [J]. GERIATRIC NURSING, 2017, 38 (06) : 567 - 572
  • [5] Development of Mayo Delirium Prediction tool
    Pagali, S.
    Miller, D.
    Fischer, K.
    Schroeder, D.
    Egger, N.
    Manning, D.
    Lapid, M.
    Burton, M.
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2020, 68 : S16 - S16
  • [6] Development and validation of risk-stratification delirium prediction model for critically ill patients A prospective, observational, single-center study
    Chen, Yu
    Du, Hang
    Wei, Bao-Hua
    Chang, Xue-Ni
    Dong, Chen-Ming
    [J]. MEDICINE, 2017, 96 (29)
  • [7] The development of an automated ward independent delirium risk prediction model
    Hugo A. J. M. de Wit
    Bjorn Winkens
    Carlota Mestres Gonzalvo
    Kim P. G. M. Hurkens
    Wubbo J. Mulder
    Rob Janknegt
    Frans R. Verhey
    Paul-Hugo M. van der Kuy
    Jos M. G. A. Schols
    [J]. International Journal of Clinical Pharmacy, 2016, 38 : 915 - 923
  • [8] The development of an automated ward independent delirium risk prediction model
    de Wit, Hugo A. J. M.
    Winkens, Bjorn
    Gonzalvo, Carlota Mestres
    Hurkens, Kim P. G. M.
    Mulder, Wubbo J.
    Janknegt, Rob
    Verhey, Frans R.
    van der Kuy, Paul-Hugo M.
    Schols, Jos M. G. A.
    [J]. INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2016, 38 (04) : 915 - 923
  • [9] Predicting delirium in older non-intensive care unit inpatients: development and validation of the DELIrium risK Tool (DELIKT)
    Angela E. Schulthess-Lisibach
    Giulia Gallucci
    Valérie Benelli
    Ramona Kälin
    Sven Schulthess
    Marco Cattaneo
    Patrick E. Beeler
    Chantal Csajka
    Monika Lutters
    [J]. International Journal of Clinical Pharmacy, 2023, 45 : 1118 - 1127
  • [10] Predicting delirium in older non-intensive care unit inpatients: development and validation of the DELIrium risK Tool (DELIKT)
    Schulthess-Lisibach, Angela E.
    Gallucci, Giulia
    Benelli, Valerie
    Kalin, Ramona
    Schulthess, Sven
    Cattaneo, Marco
    Beeler, Patrick E.
    Csajka, Chantal
    Lutters, Monika
    [J]. INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2023, 45 (05) : 1118 - 1127