Robust Automated Tumour Segmentation on Histological and Immunohistochemical Tissue Images

被引:24
|
作者
Wang, Ching-Wei [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Biomed Engn, Taipei, Taiwan
来源
PLOS ONE | 2011年 / 6卷 / 02期
关键词
QUANTIFICATION; CLASSIFICATION; MICROARRAY;
D O I
10.1371/journal.pone.0015818
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tissue microarray (TMA) is a high throughput analysis tool to identify new diagnostic and prognostic markers in human cancers. However, standard automated method in tumour detection on both routine histochemical and immunohistochemistry (IHC) images is under developed. This paper presents a robust automated tumour cell segmentation model which can be applied to both routine histochemical tissue slides and IHC slides and deal with finer pixel-based segmentation in comparison with blob or area based segmentation by existing approaches. The presented technique greatly improves the process of TMA construction and plays an important role in automated IHC quantification in biomarker analysis where excluding stroma areas is critical. With the finest pixel-based evaluation (instead of area-based or object-based), the experimental results show that the proposed method is able to achieve 80% accuracy and 78% accuracy in two different types of pathological virtual slides, i.e., routine histochemical H&E and IHC images, respectively. The presented technique greatly reduces labor-intensive workloads for pathologists and highly speeds up the process of TMA construction and provides a possibility for fully automated IHC quantification.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A robust method for alignment of histological images
    Bossert, O
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 78 (01) : 35 - 38
  • [22] Automated Segmentation of Breast in 3-D MR Images Using a Robust Atlas
    Khalvati, Farzad
    Gallego-Ortiz, Cristina
    Balasingham, Sharmila
    Martel, Anne L.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (01) : 116 - 125
  • [23] Automated and Robust Geographic Atrophy Segmentation for Time Series SD-OCT Images
    Li, Yuchun
    Niu, Sijie
    Ji, Zexuan
    Chen, Qiang
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT I, 2018, 11256 : 249 - 261
  • [24] A robust method for segmentation of human brain tissue from magnetic resonance images
    Lin, Pan
    Zheng, Chong-Xun
    Yang, Yong
    Yan, Xiang-Guo
    Gu, Jian-Wen
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2005, 27 (09): : 1420 - 1424
  • [25] Histological and immunohistochemical studies of tissue engineered odontogenesis
    Honda, MJ
    Sumita, Y
    Kagami, H
    Ueda, M
    ARCHIVES OF HISTOLOGY AND CYTOLOGY, 2005, 68 (02) : 89 - 101
  • [26] Automatic Segmentation of Bone Canals in Histological Images
    Campos Cunha Gondim, Pedro Henrique
    Justino Oliveira Limirio, Pedro Henrique
    Rocha, Flaviana Soares
    Batista, Jonas Dantas
    Dechichi, Paula
    Nassif Travencolo, Bruno Augusto
    Backes, Andre Ricardo
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (03) : 678 - 690
  • [27] Automatic Segmentation of Bone Canals in Histological Images
    Pedro Henrique Campos Cunha Gondim
    Pedro Henrique Justino Oliveira Limirio
    Flaviana Soares Rocha
    Jonas Dantas Batista
    Paula Dechichi
    Bruno Augusto Nassif Travençolo
    André Ricardo Backes
    Journal of Digital Imaging, 2021, 34 : 678 - 690
  • [28] A CASE OF BASAL CELL TUMOUR IN A HORSE: HISTOLOGICAL AND IMMUNOHISTOCHEMICAL PATTERN
    Passeri, B.
    Botti, B.
    Muzzoni, E.
    Corradi, A.
    JOURNAL OF COMPARATIVE PATHOLOGY, 2009, 141 (04) : 303 - 303
  • [29] Immunohistochemical and Histological Features of a Spontaneous Leydig Cell Tumour in a Rat
    Ciaputa, Rafal
    Szymerowski, Adam
    Janus, Izabela
    Przadka, Przemyslaw
    Kandefer-Gola, Malgorzata
    Nowak, Marcin
    PAKISTAN VETERINARY JOURNAL, 2019, 39 (04) : 603 - 605
  • [30] Lipomatous mixed tumour of the skin:: a histological, immunohistochemical and ultrastructural study
    Miracco, C
    De Santi, MM
    Lalinga, AV
    Pellegrino, M
    Schürfeld, K
    Sbano, P
    Miracco, F
    BRITISH JOURNAL OF DERMATOLOGY, 2002, 146 (05) : 899 - 903