Existence and concentration of positive solutions for a critical p&q equation

被引:15
|
作者
Costa, Gustavo S. [1 ]
Figueiredo, Giovany M. [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Critical exponent; p&q Laplacian operator; Variational methods; Q ELLIPTIC PROBLEMS; BOUND-STATES; R-N; MULTIPLICITY;
D O I
10.1515/anona-2020-0190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show existence and concentration results for a class of p&q critical problems given by -div (a (epsilon(p)vertical bar del u vertical bar(p)) epsilon(p)vertical bar del u vertical bar(p)(-2)del u) + V(z)b (vertical bar u vertical bar(p)) vertical bar u vertical bar(p-2) u = f(u) + vertical bar u vertical bar(q)*(-2) u in R-N, where u is an element of W-1,W-p(R-N) boolean AND W-1,W-q(R-N), epsilon > 0 is a small parameter, 1 < p <= q < N, N >= 2 and q* = Nq/(N-q). The potential V is positive and f is a superlinear function of C-1 class. We use Mountain Pass Theorem and the penalization arguments introduced by Del Pino & Felmer's associated to Lions' Concentration and Compactness Principle in order to overcome the lack of compactness.
引用
收藏
页码:243 / 267
页数:25
相关论文
共 50 条