Existence, multiplicity, and concentration of positive solutions for a quasilinear Choquard equation with critical exponent

被引:12
|
作者
Zhang, Wei [1 ]
Wu, Xian [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
GROUND-STATE SOLUTIONS; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS;
D O I
10.1063/1.5051205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the quasilinear Choquard equations -epsilon(2)Delta u + V(x)u - epsilon(2)u Delta u(2) = epsilon(u-N) integral R-N vertical bar u(y)vertical bar(P)/vertical bar x y vertical bar(u) dy vertical bar u(x)vertical bar(P-2) u(x) + vertical bar u vertical bar(22*-2) u, where epsilon > 0 is a parameter, 0 < mu < 2 < N, and p(N) < p < 4(N-mu)/N-2) with p(N) = max{4, 3N-2 mu+2/N-2}. Under suitable assumption on V, we research the existence, multiplicity, and concentration of positive solutions for the problem by a dual approach. Published under license by AlP Publishing.
引用
收藏
页数:19
相关论文
共 50 条