General yield behaviors of the {110} hexagonal dislocation networks in body centered cubic metal molybdenum

被引:2
|
作者
Xia, Z. Y. [1 ,2 ]
Zhang, Z. J. [1 ]
Yan, J. X. [1 ,2 ]
Yang, J. B. [1 ,2 ]
Zhang, Z. F. [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Lab Fatigue & Fracture Mat, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Hexagonal dislocation networks; Body centered cubic; Yielding behaviors; Small-angle twist grain boundaries; Atomistic simulation; HIGH-PURITY NIOBIUM; ANOMALOUS SLIP; PLASTIC-DEFORMATION; SINGLE-CRYSTALS; MECHANISM; GLIDE; FLOW;
D O I
10.1016/j.commatsci.2019.109116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The {110} hexagonal dislocation networks (HDNs) act as important carriers of the low-temperature plastic deformation in the body-centered-cubic (BCC) metals. Erenow, only a handful of studies have been performed on the yield behaviors of this planar networks, resulting in it being perplexing. In this letter, by three types of loading modes, the general yield behaviors, which comprise the critical stresses to move the network along any direction on the (01 (1) over bar) plane, the partitions on the cooperative motion of two or three sets of dislocations and the conditions under which the steady motion of the HDN takes place, are proposed to disclose the motion mechanism for the HDNs in molybdenum by atomistic simulations. Also, the characteristic that the motion directions of the HDN are changeable, a result of the natural transition to the steady motion, explains why there is no fixed dead band for the (01 (1) over bar) anomalous slip in these BCC metals.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] DETERMINATION OF THE GROWTH MODE OF METASTABLE BODY-CENTERED-CUBIC COBALT ON GAAS(110)
    LIND, DM
    IDZERDA, YU
    PRINZ, GA
    JONKER, BT
    KREBS, JJ
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (03): : 819 - 820
  • [42] Metal hydrides with body-centered cubic structure: Advantages and challenges
    Martinez-Amariz, A.
    Pena, Dario
    Montes Vera, E.
    5TH INTERNATIONAL MEETING FOR RESEARCHERS IN MATERIALS AND PLASMA TECHNOLOGY (5TH IMRMPT), 2019, 1386
  • [43] MODELING OF INTERSTITIAL SOLUTE BEHAVIOR IN A BODY-CENTERED CUBIC METAL
    STECKEL, GL
    ALTSTETTER, CJ
    ACTA METALLURGICA, 1979, 27 (07): : 1271 - 1279
  • [44] Cyclic Polycrystalline Viscoplastic Model for Ratchetting of a Body Centered Cubic Metal
    Luo, Juan
    Kang, Guozheng
    Bruhns, Otto T.
    Zhang, Chuanzeng
    ADVANCES IN ENGINEERING PLASTICITY XI, 2013, 535-536 : 173 - +
  • [45] Emission properties of body-centered cubic elemental metal photocathodes
    Li, Tuo
    Rickman, Benjamin L.
    Schroeder, W. Andreas
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (13)
  • [46] Orientational proliferation and successive twinning from thermoreversible hexagonal-body-centered cubic transitions
    Lee, HH
    Jeong, WY
    Kim, JK
    Ihn, KJ
    Kornfield, JA
    Wang, ZG
    Qi, SY
    MACROMOLECULES, 2002, 35 (03) : 785 - 794
  • [47] BINDING ENERGY AND COMPRESSIBILITY OF BODY-CENTERED CUBIC AND CLOSE-PACKED HEXAGONAL SODIUM
    SAXENA, VK
    KAPOOR, QS
    BHATTACHARYA, DL
    PHYSICA STATUS SOLIDI, 1969, 34 (01): : 145 - +
  • [48] Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals
    Wang, L.
    Bei, H.
    Li, T. L.
    Gao, Y. F.
    George, E. P.
    Nieh, T. G.
    SCRIPTA MATERIALIA, 2011, 65 (03) : 179 - 182
  • [49] A unified dislocation-based model for ultrafine- and fine-grained face-centered cubic and body-centered cubic metals
    He, S. H.
    Zhu, K. Y.
    Huang, M. X.
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 131 : 1 - 10
  • [50] Dynamic behaviors of body-centered cubic metals with ultrafine grained and nanocrystalline microstructures
    Wei, Q.
    Schuster, B. E.
    Mathaudhu, S. N.
    Hartwig, K. T.
    Kecskes, L. J.
    Dowding, R. J.
    Ramesh, K. T.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 493 (1-2): : 58 - 64