Global multipartite entanglement dynamics in Grover's search algorithm

被引:14
|
作者
Pan, Minghua [1 ,2 ,3 ]
Qiu, Daowen [1 ]
Zheng, Shenggen [1 ]
机构
[1] Sun Yat Sen Univ, Inst Comp Sci Theory, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[3] Wuzhou Univ, Sch Informat & Elect Engn, Wuzhou 543002, Peoples R China
关键词
Entanglement dynamics; Quantum search algorithm; Geometricmeasure of entanglement; Scale invariance;
D O I
10.1007/s11128-017-1661-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement is considered to be one of the primary reasons for why quantum algorithms are more efficient than their classical counterparts for certain computational tasks. The global multipartite entanglement of the multiqubit states in Grover's search algorithm can be quantified using the geometric measure of entanglement (GME). Rossi et al. (Phys Rev A 87: 022331, 2013) found that the entanglement dynamics is scale invariant for large n. Namely, the GME does not depend on the number n of qubits; rather, it only depends on the ratio of iteration k to the total iteration. In this paper, we discuss the optimization of the GME for large n. We prove that " the GME is scale invariant" does not always hold. We show that there is generally a turning point that can be computed in terms of the number of marked states and their Hamming weights during the curve of the GME. The GME is scale invariant prior to the turning point. However, the GME is not scale invariant after the turning point since it also depends on n and the marked states.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Combining a Local Search and Grover’s Algorithm in Black-Box Global Optimization
    D. W. Bulger
    [J]. Journal of Optimization Theory and Applications, 2007, 133 : 289 - 301
  • [22] Multipartite entanglement dynamics in a cavity
    Amaro, J. G.
    Pineda, C.
    [J]. PHYSICA SCRIPTA, 2015, 90 (06)
  • [23] Global versus local quantum correlations in the Grover search algorithm
    J. Batle
    C. H. Raymond Ooi
    Ahmed Farouk
    M. S. Alkhambashi
    S. Abdalla
    [J]. Quantum Information Processing, 2016, 15 : 833 - 849
  • [24] Multipartite entanglement dynamics and decoherence
    Ma, XS
    Wang, AM
    Yang, XD
    Xu, F
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2006, 37 (01): : 135 - 140
  • [25] Global versus local quantum correlations in the Grover search algorithm
    Batle, J.
    Ooi, C. H. Raymond
    Farouk, Ahmed
    Alkhambashi, M. S.
    Abdalla, S.
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (02) : 833 - 849
  • [26] Multipartite entanglement dynamics and decoherence
    X. S. Ma
    A. M. Wang
    X. D. Yang
    F. Xu
    [J]. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2006, 37 : 135 - 140
  • [27] Searching a quantum database with Grover's search algorithm
    Kain, Ben
    [J]. AMERICAN JOURNAL OF PHYSICS, 2021, 89 (06) : 618 - 626
  • [28] Grover's algorithm for multiobject search in quantum computing
    Chen, G
    Fulling, SA
    Lee, H
    Scully, MO
    [J]. DIRECTIONS IN QUANTUM OPTICS, 2001, 561 : 165 - 175
  • [29] Grover's quantum search algorithm and Diophantine approximation
    Dolev, S
    Pitowsky, I
    Tamir, B
    [J]. PHYSICAL REVIEW A, 2006, 73 (02):
  • [30] Deterministic application of Grover's quantum search algorithm
    Okamoto, K
    Watanabe, O
    [J]. COMPUTING AND COMBINATORICS, 2001, 2108 : 493 - 501