Integration of particle swarm optimization and genetic algorithm for dynamic clustering

被引:105
|
作者
Kuo, R. J. [1 ]
Syu, Y. J. [2 ]
Chen, Zhen-Yao [3 ]
Tien, F. C. [4 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Ind Management, Taipei, Taiwan
[2] Vanguard Int Semicond Corp, Hsinchu, Taiwan
[3] De Lin Inst Technol, Dept Business Adm, New Taipei City, Taiwan
[4] Natl Taipei Univ Technol, Dept Ind Engn & Management, Taipei, Taiwan
关键词
Cluster analysis; Dynamic clustering; Particle swarm optimization algorithm; Genetic algorithm; BINARY PSO; HYBRID;
D O I
10.1016/j.ins.2012.01.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although the algorithms for cluster analysis are continually improving, most clustering algorithms still need to set the number of clusters. Thus, this study proposes a novel dynamic clustering approach based on particle swarm optimization (PSO) and genetic algorithm (GA) (DCPG) algorithm. The proposed DCPG algorithm can automatically cluster data by examining the data without a pre-specified number of clusters. The computational results of four benchmark data sets indicate that the DCPG algorithm has better validity and stability than the dynamic clustering approach based on binary-PSO (DCPSO) and the dynamic clustering approach based on GA (DCGA) algorithms. Furthermore, the DCPG algorithm is applied to cluster the bills of material (BOM) for the Advantech Company in Taiwan. The clustering results can be used to categorize products which share the same materials into clusters. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 140
页数:17
相关论文
共 50 条
  • [21] The Particle Swarm Optimization based on the Genetic Algorithm
    Li, Li
    Chen, Kun
    Hu, Haibo
    [J]. 2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 305 - 308
  • [22] Evolution of the population of a genetic algorithm using particle swarm optimization: application to clustering analysis
    Yannis Marinakis
    Magdalene Marinaki
    Nikolaos Matsatsinis
    Constantin Zopounidis
    [J]. Operational Research, 2009, 9 (1) : 105 - 120
  • [23] Dynamic clustering using combinatorial particle swarm optimization
    Masoud, Hamid
    Jalili, Saeed
    Hasheminejad, Seyed Mohammad Hossein
    [J]. APPLIED INTELLIGENCE, 2013, 38 (03) : 289 - 314
  • [24] Dynamic clustering using combinatorial particle swarm optimization
    Hamid Masoud
    Saeed Jalili
    Seyed Mohammad Hossein Hasheminejad
    [J]. Applied Intelligence, 2013, 38 : 289 - 314
  • [25] Dynamic cluster in particle swarm optimization algorithm
    El Dor, Abbas
    Lemoine, David
    Clerc, Maurice
    Siarry, Patrick
    Deroussi, Laurent
    Gourgand, Michel
    [J]. NATURAL COMPUTING, 2015, 14 (04) : 655 - 672
  • [26] A Modified Dynamic Particle Swarm Optimization Algorithm
    Liu Wen
    [J]. 2012 FIFTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2012), VOL 1, 2012, : 432 - 435
  • [27] Particle Swarm Optimization Algorithm in Dynamic Environments: Adapting Inertia Weight and Clustering Particles
    Rezazadeh, Iman
    Meybodi, Mohmmad Reza
    Naebi, Ahmad
    [J]. UKSIM FIFTH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS 2011), 2011, : 76 - 82
  • [28] Dynamic cluster in particle swarm optimization algorithm
    Abbas El Dor
    David Lemoine
    Maurice Clerc
    Patrick Siarry
    Laurent Deroussi
    Michel Gourgand
    [J]. Natural Computing, 2015, 14 : 655 - 672
  • [29] Particle Swarm Optimization Algorithm for Dynamic Environments
    Sadeghi, Sadrollah
    Parvin, Hamid
    Rad, Farhad
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, MICAI 2015, PT I, 2015, 9413 : 260 - 269
  • [30] Dynamic particle swarm optimization and K-means clustering algorithm for image segmentation
    Li, Haiyang
    He, Hongzhou
    Wen, Yongge
    [J]. OPTIK, 2015, 126 (24): : 4817 - 4822