Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring

被引:20
|
作者
Ganguly, A. [1 ]
Mitra, S. [1 ]
Samanta, D. [1 ]
Kundu, D. [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Hybrid censoring; Two-parameter exponential distribution; Joint moment generating function; Maximum likelihood estimators; Bootstrap confidence interval;
D O I
10.1016/j.jspi.2011.08.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:613 / 625
页数:13
相关论文
共 50 条
  • [21] Estimation on a two-parameter Rayleigh distribution under the progressive Type-II censoring scheme: comparative study
    Seo, Jung-In
    Seo, Byeong-Gyu
    Kang, Suk-Bok
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2019, 26 (02) : 91 - 102
  • [22] Linear Bayes estimator for the two-parameter exponential family under type II censoring
    Wang, Lichun
    Singh, Radhey S.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 633 - 642
  • [23] Exact inference and prediction for K-sample exponential case under type-II censoring
    Balakrishnan, N
    Lin, CT
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2005, 75 (05) : 315 - 331
  • [24] Exact Likelihood Inference for k Exponential Populations Under Joint Progressive Type-II Censoring
    Balakrishnan, N.
    Su, Feng
    Liu, Kin-Yat
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (04) : 902 - 923
  • [25] Exact inference on multiple exponential populations under a joint type-II progressive censoring scheme
    Mondal, Shuvashree
    Kundu, Debasis
    STATISTICS, 2019, 53 (06) : 1329 - 1356
  • [26] An Optimal Bayesian Sampling Plan for Two-Parameter Exponential Distribution Under Type-I Hybrid Censoring
    Kiran Prajapat
    Arnab Koley
    Sharmishtha Mitra
    Debasis Kundu
    Sankhya A, 2023, 85 : 512 - 539
  • [27] An Optimal Bayesian Sampling Plan for Two-Parameter Exponential Distribution Under Type-I Hybrid Censoring
    Prajapat, Kiran
    Mitra, Sharmishtha
    Kundu, Debasis
    Koley, Arnab
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 512 - 539
  • [28] Statistical Inference of Weighted Exponential Distribution under Joint Progressive Type-II Censoring
    Qiao, Yinuo
    Gui, Wenhao
    SYMMETRY-BASEL, 2022, 14 (10):
  • [29] Parameter estimation of a two-parameter Lindley distribution under hybrid censoring
    Al-Zahrani B.
    Gindwan M.
    International Journal of System Assurance Engineering and Management, 2014, 5 (04) : 628 - 636
  • [30] Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes
    Childs, A.
    Chandrasekar, B.
    Balakrishnan, N.
    STATISTICAL MODELS AND METHODS FOR BIOMEDICAL AND TECHNICAL SYSTEMS, 2008, : 319 - +