Bond enhancement for NSM FRP bars in concrete using different anchorage systems

被引:27
|
作者
Wang, Qiang [1 ]
Li, Ting [1 ]
Zhu, Hong [1 ,2 ]
Su, Weiqiang [3 ]
Hu, Xiuxiu [4 ]
机构
[1] Southeast Univ, Key Lab Concrete & Prestressed Concrete Struct, Minist Educ, Nanjing 210096, Peoples R China
[2] Nanjing Inst Underground Space Adv Technol, Nanjing 210032, Peoples R China
[3] Suzhou Yanlord Land Co Ltd, Nanjing 215000, Peoples R China
[4] Nanjing Yangtze River Urban Architectural Design, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
NSM-FRP bar; Strengthening; Additional ribs; Wire mesh mortar protection layer; Anchorage system; ADDITIONAL RIBS; BEAMS; BEHAVIOR; STEEL; REINFORCEMENT; PERFORMANCE; COMPOSITES; STRENGTH; FLEXURE; PLATES;
D O I
10.1016/j.conbuildmat.2020.118316
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Studies have shown that the near-surface mounted (NSM) FRP technique provides better bond performance than the externally bonded (EB) FRP method in strengthening applications. However, undesirable intermediate crack-induced debonding failures and end debonding failures are still frequently observed in NSM FRP reinforcements. In this study, the additional ribs (ARs) anchorage system and the wire mesh mortar protection layer (WML) anchorage system were proposed in an attempt to eliminate such premature debonding failures in NSM FRP strengthening system. The testing results of 20 direct pull-out specimens were used to verify the feasibility of the two proposed anchorage systems in improving the bond behaviour of NSM FRP bars. The individual use of the ARs anchorage system and WML anchorage system enhanced the bond strength of the NSM FRP bars up to 40.7% and 69.7%, respectively. The combined use of the two developed anchorage systems was found to be the most effective in increasing the bond performance of the NSM FRP bars, providing a maximum bond enhancement of 114.3%. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Theoretical solution to fatigue bond stress distribution of NSM FRP reinforcement in concrete
    Chen, Cheng
    Cheng, Lijuan
    COMPOSITES PART B-ENGINEERING, 2016, 99 : 453 - 464
  • [32] Bond of NSM FRP-Strengthened Concrete: Round Robin Test Initiative
    Bilotta, Antonio
    Ceroni, Francesca
    Barros, Joaquim A. O.
    Costa, Ines
    Palmieri, Aniello
    Szabo, Zsombor K.
    Nigro, Emidio
    Matthys, Stijn
    Balazs, Gyoergy L.
    Pecce, Marisa
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2016, 20 (01)
  • [33] Bond strength of FRP bars in recycled-aggregate concrete
    Godat, Ahmed
    Aldaweela, Shaima
    Aljaberi, Hamda
    Al Tamimi, Noura
    Alghafri, Ebtesam
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 267
  • [34] Analytical modelling of bond between FRP reinforcing bars and concrete
    Cosenza, E.
    Manfredi, G.
    Realfonzo, R.
    1995,
  • [35] A study of the bond behavior of FRP bars in MPC seawater concrete
    Sun, Wen
    Zheng, Yu
    Zhou, Linzhu
    Song, Jiapeng
    Bai, Yun
    ADVANCES IN STRUCTURAL ENGINEERING, 2021, 24 (06) : 1110 - 1123
  • [36] Neural network model for bond strength of FRP bars in concrete
    Concha, Nolan C.
    STRUCTURES, 2022, 41 : 306 - 317
  • [37] Anchorage Systems Used in FRP Strengthening of Concrete Members
    Jumaah, Reem
    Kalfat, Robin
    Al-Mahaidi, Riadh
    Abdouka, Kamiran
    HIGH TECH CONCRETE: WHERE TECHNOLOGY AND ENGINEERING MEET, 2018, : 877 - 886
  • [38] Experimental and theoretical studies on bond behavior between concrete and FRP bars with different surface conditions
    Chen, Lijie
    Liang, Kun
    Shan, Zhiwei
    COMPOSITE STRUCTURES, 2023, 309
  • [39] Machine learning prediction of interfacial bond strength of FRP bars with different surface characteristics to concrete
    Tian, Lingyu
    Wang, Luchen
    Xian, Guijun
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [40] Durability of bond in NSM CFRP-concrete systems under different environmental conditions
    Fernandes, Pedro
    Sena-Cruz, Jose
    Xavier, Jose
    Silva, Patricia
    Pereira, Eduardo
    Cruz, Jose
    COMPOSITES PART B-ENGINEERING, 2018, 138 : 19 - 34