Lipschitz retractions and complementation properties of Banach spaces

被引:5
|
作者
Hajek, Petr [1 ]
Quilis, Andres [1 ,2 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Math, Tech 2, Prague 16627 6, Czech Republic
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
关键词
Lipschitz retractions; Complementation properties of; Banach spaces; SUBSPACES;
D O I
10.1016/j.jfa.2022.109494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we introduce and study the Lipschitz retractional structure of metric spaces. This topic was motivated by the analogous projectional structure of Banach spaces, a topic that has been thoroughly investigated. The more general metric setting fits well with the currently active theory of Lipschitz free spaces and spaces of Lipschitz functions. Among our applications we show that the Lipschitz free space F(X) is a Plichko space whenever X is a Plichko Banach space. Our main results include two examples of metric spaces. The first one M contains two points {0, 1} such that no separable subset of M containing these points is a Lipschitz retract of M. The second example fails the analogous property for arbitrary infinite density. Finally, we introduce the metric version of the concept of locally complemented Banach subspace, and prove some metric analogues to the linear theory. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Octahedrality in Lipschitz-free Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 447 - 460
  • [32] On the numerical radius of Lipschitz operators in Banach spaces
    Wang, Ruidong
    Huang, Xujian
    Tan, Dongni
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (01) : 1 - 18
  • [33] FACTORIZATION OF LIPSCHITZ OPERATORS ON BANACH FUNCTION SPACES
    Achour, D.
    Dahia, E.
    Rueda, P.
    Sanchez Perez, E. A.
    Yahi, R.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (04): : 1091 - 1104
  • [34] The numerical radius of Lipschitz operators on Banach spaces
    Wang, Ruidong
    STUDIA MATHEMATICA, 2012, 209 (01) : 43 - 52
  • [35] DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS ON BANACH-SPACES
    PREISS, D
    JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 91 (02) : 312 - 345
  • [36] NOTE ON BANACH-SPACES OF LIPSCHITZ FUNCTIONS
    JOHNSON, J
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (02) : 475 - 482
  • [37] Isometries of Lipschitz-free Banach spaces
    Cuth, Marek
    Doucha, Michal
    Titkos, Tamas
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (05):
  • [39] On Lipschitz-free spaces over spheres of Banach spaces
    Candido, Leandro
    Kaufmann, Pedro L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [40] Lipschitz functions on Banach spaces which are actually on Asplund spaces
    CHENG Lixin Shi ShuzhongNankai Institute of Mathematics
    Chinese Science Bulletin, 1997, (24) : 2051 - 2054