Volatile organic compounds in foods: A five year study

被引:136
|
作者
Fleming-Jones, ME [1 ]
Smith, RE [1 ]
机构
[1] US FDA, Lenexa, KS 66214 USA
关键词
volatile organic compound (VOC); gas chromatography-mass spectrometry (GC-MS); food analysis;
D O I
10.1021/jf0303159
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
A purge and trap procedure was used with gas chromatography-mass spectrometry determination to analyze 70 foods for volatile organic compounds (VOCs). The results from analyses over a 5 year period (1996-2000) are reported. VOCs were found in at least one sample of all foods tested, although no single compound was found in each of the foods. The total amount of VOCs found in a single food item over the 5 year period ranged from 24 to 5328 ppb, with creamed corn (canned) the lowest and cheddar cheese the highest. Benzene was found in all foods except American cheese and vanilla ice cream. Benzene levels ranged from 1 to 190 ppb, with the highest level found in fully cooked ground beef. Benzene was found in 12 samples of cooked ground beef, with an average of 40 ppb. Benzene levels above 100 ppb were also seen in at least one sample each of a cola (138 ppb), raw bananas (132 ppb), and cole slaw (102 ppb). This compares to a maximum contaminant level of 5 ppb set by the U.S. EPA for drinking water.
引用
收藏
页码:8120 / 8127
页数:8
相关论文
共 50 条
  • [31] Volatile organic compounds in the atmosphere
    Albaiges, J.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2008, 88 (08) : 595 - 595
  • [32] Biofiltration of volatile organic compounds
    Luc Malhautier
    Nadia Khammar
    Sandrine Bayle
    Jean-Louis Fanlo
    Applied Microbiology and Biotechnology, 2005, 68 : 16 - 22
  • [33] A Database for Volatile Organic Compounds
    K. Mannschreck
    K. Bächmann
    K. H. Becker
    Th. Heil
    R. Kurtenbach
    M. Memmesheimer
    V. Mohnen
    A. Obermeier
    D. Poppe
    R. Steinbrecher
    Th. Schmitz
    A. Volz-Thomas
    F. Zabel
    Journal of Atmospheric Chemistry, 2002, 42 : 281 - 286
  • [34] Elimination of volatile organic compounds
    Rene, Eldon R.
    Jagannathan, K.
    Swaminathan, T.
    Chemical Engineering World, 2004, 39 (08): : 42 - 50
  • [35] Testing for volatile organic compounds
    Hogan, Hank
    Fuels and Lubes International, 2016, 22 (04): : 8 - 10
  • [36] A Year - round motoring of ambient volatile organic compounds across Dardanelles strait
    Mentese, Sibel
    Bas, Batuhan
    JOURNAL OF CHEMICAL METROLOGY, 2020, 14 (02): : 177 - 189
  • [37] Volatile Organic Compounds in Uremia
    Pagonas, Nikolaos
    Vautz, Wolfgang
    Seifert, Luzia
    Slodzinski, Rafael
    Jankowski, Joachim
    Zidek, Walter
    Westhoff, Timm H.
    PLOS ONE, 2012, 7 (09):
  • [38] Detection of volatile organic compounds
    不详
    ZKG INTERNATIONAL, 2008, 61 (07): : 13 - 13
  • [39] A database for volatile organic compounds
    Mannschreck, K
    Bächmann, K
    Barnes, I
    Becker, KH
    Heil, T
    Kurtenbach, R
    Memmesheimer, M
    Mohnen, V
    Obermeier, A
    Poppe, D
    Steinbrecher, R
    Schmitz, T
    Volz-Thomas, A
    Zabel, F
    JOURNAL OF ATMOSPHERIC CHEMISTRY, 2002, 42 (01) : 281 - 286
  • [40] Atherogenicity of Volatile Organic Compounds
    Malovichko, Marina V.
    Riggs, Daniel W.
    Agrawal, Abhinav
    O'Toole, Timothy E.
    Keith, Rachel J.
    DeFilippis, Andrew
    Rai, Shesh N.
    Valle, Karen
    Yimer, Wondwosen K.
    Bhatnagar, Aruni
    Conklin, Daniel J.
    Hall, Michael E.
    Srivastava, Sanjay
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2019, 39