NUMERICAL ANALYSIS OF A STOKES INTERFACE PROBLEM BASED ON FORMULATION USING THE CHARACTERISTIC FUNCTION

被引:1
|
作者
Sugitani, Yoshiki [1 ]
机构
[1] Tohoku Univ, WPI AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
关键词
interface problem; Stokes equation; finite element method; FLOW;
D O I
10.21136/AM.2017.0357-16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates of order h(1/2) in H-1 x L-2 norm for the velocity and pressure, and of order h in L-2 norm for the velocity are derived. Those theoretical results are also verified by numerical examples.
引用
收藏
页码:459 / 476
页数:18
相关论文
共 50 条
  • [41] Numerical analysis of the electric field formulation of an eddy current problem
    Bermudez, A
    Rodríguez, R
    Salgado, P
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (05) : 359 - 364
  • [42] A STREAM FUNCTION-VORTICITY VARIATIONAL FORMULATION FOR THE EXTERIOR STOKES PROBLEM IN WEIGHTED SOBOLEV SPACES
    GIRAULT, V
    GIROIRE, J
    SEQUEIRA, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (08): : 499 - 502
  • [43] Numerical analysis of a stable discontinuous Galerkin scheme for the hydrostatic Stokes problem
    Guillen-Gonzalez, Francisco
    Victoria Redondo-Neble, M.
    Rafael Rodriguez-Galvan, J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2021, 29 (02) : 103 - 118
  • [44] A STREAM-FUNCTION VORTICITY VARIATIONAL FORMULATION FOR THE EXTERIOR STOKES PROBLEM IN WEIGHTED SOBOLEV SPACES
    GIRAULT, V
    GIROIRE, J
    SEQUEIRA, A
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1992, 15 (05) : 345 - 363
  • [45] STREAM FUNCTION FORMULATION OF THE 2-D STOKES PROBLEM IN A MULTIPLY-CONNECTED DOMAIN
    CROWET, F
    DIERIECK, C
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1983, 2 (01): : 67 - 74
  • [46] Finite element error analysis of surface Stokes equations in stream function formulation
    Brandner, Philip
    Reusken, Arnold
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2020, 54 (06) : 2069 - 2097
  • [47] Analysis of Estimators for Stokes Problem Using a Mixed Approximation
    El Akkad, Abdeslam
    Elkhalfi, Ahmed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (06): : 105 - 128
  • [48] Numerical Analysis of Finite Periodic Array Antenna Using Novel Characteristic Basis Function Method
    Konno, Keisuke
    Chen, Qiang
    Burkholder, Robert J.
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 49 - 50
  • [49] NUMERICAL SOLUTIONS OF NAVIER-STOKES EQUATIONS USING GREENS FUNCTION
    WU, JC
    THOMPSON, JF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (11): : 1377 - &
  • [50] A mixed formulation of the Bingham fluid flow problem: Analysis and numerical solution
    Aposporidis, Alexis
    Haber, Eldad
    Olshanskii, Maxim A.
    Veneziani, Alessandro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (29-32) : 2434 - 2446