NORMAL 0-1 POLYTOPES

被引:3
|
作者
Huy Tai Ha [1 ]
Kuei-Nuan Lin [2 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[2] Penn State Greater Allegheny, Acad Affairs, Mckeesport, PA USA
关键词
Ehrhart ring; polytopal ring; toric ring; normal; squarefree monomial ideals; hypergraphs; polytopes; MONOMIAL IDEALS; ALGEBRAS; REGULARITY; CLUTTERS;
D O I
10.1137/130948240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the question of when 0-1 polytopes are normal or, equivalently, have the integer decomposition property. In particular, we shall associate to each 0-1 polytope a labeled hypergraph, and examine the equality between its Ehrhart and polytopal rings via the combinatorial structures of the labeled hypergraph.
引用
收藏
页码:210 / 223
页数:14
相关论文
共 50 条
  • [21] HAMILTONICITY IN (0-1)-POLYHEDRA
    NADDEF, DJ
    PULLEYBLANK, WR
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (01) : 41 - 52
  • [22] REARRANGEMENTS OF (0-1) MATRICES
    KATZ, M
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (01) : 53 - &
  • [23] On Polytope of (0-1)-normal Big Boss Games: Redundancy and Extreme Points
    Zinchenko, Alexandra B.
    [J]. CONTRIBUTIONS TO GAME THEORY AND MANAGEMENT, VOL V, 2012, 5 : 386 - 397
  • [24] 0-1 MULTIDIMENSIONAL KNAPSACK-PROBLEMS - 0-1 OPTIMIZATION OF BOUNDS ON THE SUM OF VARIABLES
    BUI, M
    [J]. RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1993, 27 (02): : 249 - 264
  • [25] Primal separation for 0/1 polytopes
    Eisenbrand, F
    Rinaldi, G
    Ventura, P
    [J]. MATHEMATICAL PROGRAMMING, 2003, 95 (03) : 475 - 491
  • [26] Primal separation for 0/1 polytopes
    Friedrich Eisenbrand
    Giovanni Rinaldi
    Paolo Ventura
    [J]. Mathematical Programming, 2003, 95 : 475 - 491
  • [27] Lectures on 0/1-polytopes
    Ziegler, GM
    [J]. POLYTOPES - COMBINATORICS AND COMPUTATION, 2000, 29 : 1 - 41
  • [28] Simple 0/1-polytopes
    Kaibel, V
    Wolff, M
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (01) : 139 - 144
  • [29] Expansion of random 0/1 polytopes
    Leroux, Brett
    Rademacher, Luis
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (02) : 309 - 319
  • [30] THE MULTIDIMENSIONAL 0-1 KNAPSACK PROBLEM A New Heuristic Algorithm Combined with 0-1 Linear Programming
    Csebfalvi, Aniko
    Csebfalvi, Gyorgy
    [J]. ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011, : 203 - 207