A Statistical Approach for Rare-Variant Association Testing in Affected Sibships

被引:17
|
作者
Epstein, Michael P. [1 ]
Duncan, Richard [1 ]
Ware, Erin B. [2 ]
Jhun, Min A. [2 ]
Bielak, Lawrence F. [2 ]
Zhao, Wei [2 ]
Smith, Jennifer A. [2 ]
Peyser, Patricia A. [2 ]
Kardia, Sharon L. R. [2 ]
Satten, Glen A. [3 ]
机构
[1] Emory Univ, Dept Human Genet, Atlanta, GA 30322 USA
[2] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48103 USA
[3] Ctr Dis Control & Prevent, Atlanta, GA 30341 USA
关键词
FAMILY-BASED ASSOCIATION; QUANTITATIVE TRAITS; HUMAN GENOME; LINKAGE DISEQUILIBRIUM; GENETIC ASSOCIATION; AFRICAN-ANCESTRY; COMPLEX TRAITS; SEQUENCE DATA; HYPERTENSION; INDIVIDUALS;
D O I
10.1016/j.ajhg.2015.01.020
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Sequencing and exome-chip technologies have motivated development of novel statistical tests to identify rare genetic variation that influences complex diseases. Although many rare-variant association tests exist for case-control or cross-sectional studies, far fewer methods exist for testing association in families. This is unfortunate, because cosegregation of rare variation and disease status in families can amplify association signals for rare variants. Many researchers have begun sequencing (or genotyping via exome chips) familial samples that were either recently collected or previously collected for linkage studies. Because many linkage studies of complex diseases sampled affected sibships, we propose a strategy for association testing of rare variants for use in this study design. The logic behind our approach is that rare susceptibility variants should be found more often on regions shared identical by descent by affected sibling pairs than on regions not shared identical by descent. We propose both burden and variance-component tests of rare variation that are applicable to affected sibships of arbitrary size and that do not require genotype information from unaffected siblings or independent controls. Our approaches are robust to population stratification and produce analytic p values, thereby enabling our approach to scale easily to genome-wide studies of rare variation. We illustrate our methods by using simulated data and exome chip data from sibships ascertained for hypertension collected as part of the Genetic Epidemiology Network of Arteriopathy (GENOA) study.
引用
收藏
页码:543 / 554
页数:12
相关论文
共 50 条
  • [41] Multi-trait analysis of rare-variant association summary statistics using MTAR
    Lan Luo
    Judong Shen
    Hong Zhang
    Aparna Chhibber
    Devan V. Mehrotra
    Zheng-Zheng Tang
    [J]. Nature Communications, 11
  • [42] gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels
    Larson, Nicholas B.
    McDonnell, Shannon
    Albright, Lisa Cannon
    Teerlink, Craig
    Stanford, Janet
    Ostrander, Elaine A.
    Isaacs, William B.
    Xu, Jianfeng
    Cooney, Kathleen A.
    Lange, Ethan
    Schleutker, Johanna
    Carpten, John D.
    Powell, Isaac
    Bailey-Wilson, Joan E.
    Cussenot, Olivier
    Cancel-Tassin, Geraldine
    Giles, Graham G.
    MacInnis, Robert J.
    Maier, Christiane
    Whittemore, Alice S.
    Hsieh, Chih-Lin
    Wiklund, Fredrik
    Catolona, William J.
    Foulkes, William
    Mandal, Diptasri
    Eeles, Rosalind
    Kote-Jarai, Zsofia
    Ackerman, Michael J.
    Olson, Timothy M.
    Klein, Christopher J.
    Thibodeau, Stephen N.
    Schaid, Daniel J.
    [J]. GENETIC EPIDEMIOLOGY, 2017, 41 (04) : 297 - 308
  • [43] A Powerful Adaptive Cauchy-Variable Combination Method for Rare-Variant Association Analysis
    Tang, Y.
    Zhou, Y.
    Chen, L.
    Bao, Y.
    Zhang, R.
    [J]. RUSSIAN JOURNAL OF GENETICS, 2021, 57 (02) : 238 - 245
  • [44] Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes
    Dutta, Diptavo
    Scott, Laura
    Boehnke, Michael
    Lee, Seunggeun
    [J]. GENETIC EPIDEMIOLOGY, 2019, 43 (01) : 4 - 23
  • [45] A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data
    Hao Hu
    Jared C Roach
    Hilary Coon
    Stephen L Guthery
    Karl V Voelkerding
    Rebecca L Margraf
    Jacob D Durtschi
    Sean V Tavtigian
    Wilfred Shankaracharya
    Paul Wu
    Shuoguo Scheet
    Jinchuan Wang
    Gustavo Xing
    Robert Glusman
    Hong Hubley
    Vidu Li
    Barry Garg
    Leroy Moore
    David J Hood
    Deepak Galas
    Martin G Srivastava
    Lynn B Reese
    Mark Jorde
    Chad D Yandell
    [J]. Nature Biotechnology, 2014, 32 : 663 - 669
  • [46] Rare variant tests for association in affected sib pairs
    Romanescu, Razvan G.
    Gos, Gesseca
    Andrulis, Irene L.
    Bull, Shelley B.
    [J]. GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 728 - 728
  • [47] An allelic-series rare-variant association test for candidate-gene discovery
    McCaw, Zachary R.
    O'Dushlaine, Colm
    Somineni, Hari
    Bereket, Michael
    Klein, Christoph
    Karaletsos, Theofanis
    Casale, Francesco Paolo
    Koller, Daphne
    Soare, Thomas W.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2023, 110 (08) : 1330 - 1342
  • [48] Multi-trait analysis of rare-variant association summary statistics using MTAR
    Luo, Lan
    Shen, Judong
    Zhang, Hong
    Chhibber, Aparna
    Mehrotra, Devan, V
    Tang, Zheng-Zheng
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [49] Rare variant association testing for multicategory phenotype
    Bocher, Ozvan
    Marenne, Gaelle
    Saint Pierre, Aude
    Ludwig, Thomas E.
    Guey, Stephanie
    Tournier-Lasserve, Elisabeth
    Perdry, Herve
    Genin, Emmanuelle
    [J]. GENETIC EPIDEMIOLOGY, 2019, 43 (06) : 646 - 656
  • [50] RVMMAT: Rare-Variant Mixed Model Association Tests for Binary Traits in Structured and Related Samples
    Chen, Han
    Lin, Xihong
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (07) : 627 - 627