Temperature dependence of sublattice magnetization in quasi-two-dimensional S=1/2 cuprate antiferromagnets: Green's function approach

被引:10
|
作者
Rutonjski, Milica S. [1 ]
Radosevic, Slobodan M. [1 ]
Skrinjar, Mario G. [1 ]
Pavkov-Hrvojevic, Milica V. [1 ]
Kapor, Darko V. [1 ]
Pantic, Milan R. [1 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Phys, Novi Sad 21000, Serbia
关键词
D O I
10.1103/PhysRevB.76.172506
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The study of temperature dependence of the sublattice magnetization in the quasi-two-dimensional S=1/2 cuprate antiferromagnets was inspired by the existing experimental evidence concerning sublattice magnetization temperature dependence, both in the vicinity of absolute zero for the high-T-C parent compound La2CuO4 and in the whole temperature region from absolute zero to the Neel temperature (T-N) for La2CuO4 and YBa2Cu3O6.15. Using the spin Green's functions method for the quantum Heisenberg antiferromagnetic model, we obtain the results which show excellent agreement with the experimental data, proving that in the wide temperature region (from 0 to T-N), this method is more appropriate than the harmonic spin-wave theory and Schwinger-boson mean-field theory.
引用
收藏
页数:4
相关论文
共 50 条
  • [42] Nonmonotonic field dependence of the Neel temperature in the quasi-two-dimensional magnet [Cu(HF2)(pyz)2]BF4
    Sengupta, P.
    Batista, C. D.
    McDonald, R. D.
    Cox, S.
    Singleton, J.
    Huang, L.
    Papageorgiou, T. P.
    Ignatchik, O.
    Herrmannsdoerfer, T.
    Manson, J. L.
    Schlueter, J. A.
    Funk, K. A.
    Wosnitza, J.
    PHYSICAL REVIEW B, 2009, 79 (06):
  • [43] Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots
    Sako, Tokuei
    Paldus, Josef
    Diercksen, Geerd H. F.
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [44] Magnetic structure of the S=1/2 quasi-two-dimensional square-lattice Heisenberg antiferromagnet Sr2CuTeO6
    Koga, Tomoyuki
    Kurita, Nobuyuki
    Avdeev, Maxim
    Danilkin, Sergey
    Sato, Taku J.
    Tanaka, Hidekazu
    PHYSICAL REVIEW B, 2016, 93 (05)
  • [45] Crystal growth and anisotropic magnetic properties of quasi-two-dimensional (Fe1-xNix)2P2S6
    Selter, S.
    Shemerliuk, Y.
    Sturza, M., I
    Wolter, A. U. B.
    Buchner, B.
    Aswartham, S.
    PHYSICAL REVIEW MATERIALS, 2021, 5 (07)
  • [46] Magnetic properties of frustrated two-dimensional S=1/2 antiferromagnets on a square lattice
    Carretta, P
    Papinutto, N
    Melzi, R
    Millet, P
    Gonthier, S
    Mendels, P
    Wzietek, P
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (11) : S849 - S856
  • [47] Crystal growth, exfoliation, and magnetic properties of quaternary quasi-two-dimensional CuCrP2S6
    Selter, S.
    Bestha, K. K.
    Bhattacharyya, P.
    Oezer, B.
    Shemerliuk, Y.
    Roslova, M.
    Vinokurova, E.
    Corredor, L. T.
    Veyrat, L.
    Wolter, A. U. B.
    Hozoi, L.
    Buechner, B.
    Aswartham, S.
    PHYSICAL REVIEW MATERIALS, 2023, 7 (03)
  • [48] Magnetic properties of the quasi-two-dimensional S=1/2 Heisenberg antiferromagnet [Cu(pyz)2(HF2)]PF6
    Cizmar, E.
    Zvyagin, S. A.
    Beyer, R.
    Uhlarz, M.
    Ozerov, M.
    Skourski, Y.
    Manson, J. L.
    Schlueter, J. A.
    Wosnitza, J.
    PHYSICAL REVIEW B, 2010, 81 (06):
  • [49] Numerical Study of a Two-Sublattice Heisenberg Ferrimagnetic Model: Green's Function Method
    Mert, Gulistan
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1364 - 1364
  • [50] Evolution of spin gap in the excitation spectra of quasi-two-dimensional S=1/2 system CaV4O9
    Kodama, K
    Harashina, H
    Shamoto, S
    Taniguchi, S
    Sato, M
    Kakurai, K
    Nishi, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) : 1941 - 1944